Bid Caps in Noisy Contests ONLINE APPENDIX

 (Not Intended for Publication)

 (Not Intended for Publication)}

Qiang $\mathrm{Fu}^{*} \quad$ Zenan $\mathrm{Wu}^{\dagger} \quad$ Yuxuan $\mathrm{Zh}{ }^{\dagger}$

In this online appendix, we collect the analyses and discussions omitted from the main text $\|$ Online Appendix A provides sufficient condition under which a flexible cap or no cap can be optimal in a two-player Tullock contest setting. Online Appendix B characterizes the optimal cap schemes in a multi-player contest with two player types. Online Appendix C collects the proofs of propositions.

A Optimal Cap Schemes in Two-Player Contests

Proposition A1 (Flexible Cap vs. No Cap in Two-player Tullock Contests) Suppose that $n=2, \lambda \in[0,1]$, and $r \in(0,1]$. The following statements hold.
(i) If

$$
\begin{equation*}
\frac{r\left(1-v^{r}\right)}{1+v^{r}}+\frac{(1-v) \lambda-1}{1+v}>0 \tag{A1}
\end{equation*}
$$

then the optimal contest imposes a flexible cap.
(ii) If

$$
\begin{equation*}
v\left[(2+r) v^{r}-r\right]>\lambda\left(1-v^{r}\right)(r-v) \tag{A2}
\end{equation*}
$$

then the optimal contest imposes no cap.
Remark 1 follows immediately from Proposition A1.

[^0]
B Optimal Cap Schemes in Multi-player Contests with Two Player Types

The two-player example in Section 3.4 and Figure 1 provide an intuitive account of the fundamental trade-off between the cost and competition effects in asymmetric contests, as well as how the optimum depends on players' type differential and the noisiness of the winner-selection mechanism. However, a multi-player contest differs substantially from its bilateral counterpart. In a two-player contest, player heterogeneity can be captured by a single parameter, $v \equiv v_{2} / v_{1}$. In contrast, heterogeneity is inherently multidimensional with three or more players, which cannot readily be defined or measured without imposing a specific structure on the profile of prize valuations $\left(v_{1}, \ldots, v_{n}\right)$. This nuance prevents handy comparative statics.

We consider a simple Tullock contest setting with a two-type distribution-i.e., stronger and weaker-to demonstrate the complications. There are $n_{s} \geq 1$ stronger players and $n_{w} \geq 1$ weaker players, with $n_{s}+n_{w}=n \geq 3$. The former type values the prize at v_{s}, while the latter values it at v_{w}, with $v_{s} \geq v_{w}>0$. Despite the vast simplification, it is difficult to provide a simple account of the heterogeneity between players, as in the previous section: This depends on prize valuations across types - i.e., the ratio between v_{s} and v_{w}-and also the composition of types within the pool, i.e., $\left(n_{s}, n_{w}\right)$. We analyze two simple cases, which demonstrate that a variation in either dimension may change the optimum fundamentally.

Case I: $\boldsymbol{n}_{\boldsymbol{s}}=\mathbf{1}$. We first assume one stronger player vs. $n-1$ weaker opponents. The following result can be obtained.

Proposition A2 (Optimal Contest with One Strong Player) Suppose that $n_{s}=1$, $n_{w} \geq 2$, and $\lambda+r>1$. There exist two cutoffs $\hat{v}_{h}(\lambda, r) \in(0,1)$ and $\hat{v}_{l}(\lambda, r) \in(0,1)$ such that a flexible cap is optimal if $v_{w} / v_{s}<\hat{v}_{l}(\lambda, r)$ and no cap is optimal if $v_{w} / v_{s}>\hat{v}_{h}(\lambda, r)$.

The prediction is largely in line with that of Proposition A1 in a two-player setting. When v_{w} / v_{s} is sufficiently small, a flexible cap plays a more significant equalizing role. Conversely, the optimum requires no cap when v_{w} / v_{s} is sufficiently large: The direct discount on bidding incentives outweighs the limited equalizing role of a bid cap; as a result, the contest needs no intervention.

Case II: $\boldsymbol{n}_{\boldsymbol{s}} \geq 2$. The prediction drastically differs in the case of two or more stronger players, and the optimum with respect to the ratio v_{w} / v_{s} can be nonmonotone.

Proposition A3 (Optimal Contest with Two or More Strong Players) Suppose that $n_{s} \geq 2$ and $n_{w} \geq 1$. Fixing $\lambda<1$ and $r<1$, there exists a lower threshold $\underline{v}(\lambda, r) \in(0,1)$
and an upper threshold $\bar{v}(\lambda, r) \in(0,1)$, with $\bar{v}(\lambda, r) \geq \underline{v}(\lambda, r)$, such that no cap is optimal if $v_{w} / v_{s}<\underline{v}(\lambda, r)$ or $v_{w} / v_{s}>\bar{v}(\lambda, r)$.

Although a sufficiently large ratio of v_{w} / v_{s}-i.e., $v_{w} / v_{s}>\bar{v}(\lambda, r)$ —implies no policy intervention, as in Propositions A1 and A2, no cap also emerges as the optimum when v_{w} / v_{s} is sufficiently small, i.e., $v_{w} / v_{s}<\underline{v}(\lambda, r)$, which overturns the predictions of Propositions A1 and A2. Proposition A3 suggests that a flexible cap can be optimal only if v_{w} / v_{s} is in an intermediate range. This result reveals the complexity involved in a multi-player setting.

The competition effect loses its appeal when multiple stronger players are present. Suppose that $\left(n_{s}, n_{w}\right)=(2,1)$. In this case, a stronger player has to outperform his equally competent peer to secure the prize, which may help discipline him from shirking regardless of the prevailing cap scheme. Meanwhile, a cap that handicaps the stronger may not effectively revive the weaker's momentum, as a win is difficult regardless when outnumbered by more competent opponents. A smaller v_{w} / v_{s} turns out to elevate the cost of a flexible cap: To level the playing field and incentivize the single underdog, a sufficiently high marginal tax rate is required to offset the initial asymmetry, which may cause excessive incentive loss from the two stronger players. In this scenario, contest design involves a hidden selection problem: The designer may simply "abandon" the weaker, while sustaining the competition between the stronger. This effect would not come into play in a bilateral contest.

C Proofs

Proof of Proposition A1

Proof. Clearly, with $n=2$, both players are active in equilibrium and the set \mathcal{P} defined in (23) can be simplified as

$$
\mathcal{P}=\left\{\left(p_{1}^{*}, p_{2}^{*}\right): p_{1}^{*}+p_{2}^{*}=1, \frac{1}{2} \leq p_{1}^{*} \leq \frac{1}{1+v^{r}}\right\}
$$

For notational convenience, define $p_{1}^{\dagger}:=1 /\left(1+v^{r}\right)$. Substituting $p_{2}^{*}=1-p_{1}^{*}$ into the contest objective (22), the maximization problem degenerates to a single-variable optimization problem as follows:

$$
\max _{p_{1}^{*} \in\left[1 / 2, p_{1}^{\dagger}\right]} \mathcal{F}\left(p_{1}^{*}\right),
$$

where

$$
\mathcal{F}\left(p_{1}^{*}\right)=r\left\{(1-\lambda) v p_{1}^{*}\left(1-p_{1}^{*}\right)^{1-\frac{1}{r}}\left[\left(p_{1}^{*}\right)^{\frac{1}{r}}+\left(1-p_{1}^{*}\right)^{\frac{1}{r}}\right]\right.
$$

$$
\left.+\lambda\left[2 v p_{1}^{*}\left(1-p_{1}^{*}\right)+\left(1-p_{1}^{*}\right)\left[p_{1}^{*}-\left(p_{1}^{*}\right)^{1-\frac{1}{r}}\left(1-p_{1}^{*}\right)^{\frac{1}{r}}\right]\right]\right\}
$$

Carrying out the algebra, we can obtain that

$$
\mathcal{F}^{\prime}\left(p_{1}^{*}\right)=\left(1-p_{1}^{*}\right) \mathcal{G}(\eta),
$$

where $\eta:=p_{1}^{*} /\left(1-p_{1}^{*}\right) \in\left[1, v^{-r}\right]$ and

$$
\begin{aligned}
\mathcal{G}(\eta): & =r\left\{(1-\lambda) v\left[\left(1+\frac{1}{r}\right) \eta^{\frac{1}{r}}+\left(\frac{1}{r}-1\right) \eta^{1+\frac{1}{r}}+1-\eta\right]\right. \\
& \left.+\lambda\left[2 v(1-\eta)+\left(1-\eta+\left(\frac{1}{r}-1\right)\left(\frac{1}{\eta}\right)^{\frac{1}{r}}+\left(\frac{1}{r}+1\right)\left(\frac{1}{\eta}\right)^{\frac{1}{r}-1}\right)\right]\right\}
\end{aligned}
$$

It can be verified that $p_{1}^{*}=p_{1}^{\dagger}=1 /\left(1+v^{r}\right)$, or equivalently, $\eta=v^{-r}$, in a two-player contest without a cap. Therefore, a sufficient condition for a flexible cap to be optimal is $\mathcal{F}^{\prime}\left(p_{1}^{\dagger}\right)<0$, or equivalently, $\mathcal{G}\left(v^{-r}\right)<0$. Carrying out the algebra, we can obtain that

$$
\begin{aligned}
\mathcal{G}\left(v^{-r}\right)= & v^{-r} \times\left\{(1-\lambda)\left[(r+1) v^{r}+1-r+r v^{r+1}-r v\right]\right. \\
& \left.+\lambda \times\left[(r+1) v^{r+1}+r v^{r}+(1-r) v-r\right]\right\} \\
= & v^{-r} \times\left[\lambda\left(v^{r}+1\right)(v-1)+r(v+1)\left(v^{r}-1\right)+\left(v^{r}+1\right)\right] \\
= & -\left(1+v^{-r}\right)(v+1) \times\left[\frac{r\left(1-v^{r}\right)}{1+v^{r}}+\frac{(1-v) \lambda-1}{1+v}\right] .
\end{aligned}
$$

It is evident that $\mathcal{G}\left(v^{-r}\right)<0$ if

$$
\frac{r\left(1-v^{r}\right)}{1+v^{r}}+\frac{(1-v) \lambda-1}{1+v}>0
$$

which corresponds to A1) in Proposition A1(i).
Next, note that $\mathcal{G}(\eta)$ can be bounded from below by

$$
\mathcal{G}(\eta)=(1-\lambda) v\left[\left(1+\frac{1}{r}\right) \eta^{\frac{1}{r}}+\left(\frac{1}{r}-1\right) \eta^{\frac{1}{r}+1}+1-\eta\right]
$$

$$
\begin{aligned}
& +\lambda\left[2 v(1-\eta)+1-\eta+\left(\frac{1}{r}-1\right) \eta^{-\frac{1}{r}}+\left(\frac{1}{r}+1\right) \eta^{1-\frac{1}{r}}\right] \\
\geq & (1-\lambda) v\left[\left(1+\frac{1}{r}\right)+\left(\frac{1}{r}-1\right)+1-v^{-r}\right] \\
& +\lambda\left[2 v\left(1-v^{-r}\right)+1-v^{-r}+\left(\frac{1}{r}-1\right) v+\left(\frac{1}{r}+1\right) v^{1-r}\right] \\
= & \frac{v^{-r}}{r}\left\{v\left[(2+r) v^{r}-r\right]+\lambda\left(v^{r}-1\right)(r-v)\right\},
\end{aligned}
$$

where the inequality follows from $\eta \in\left[1, v^{-r}\right]$. Clearly, $\mathcal{G}(\eta)>0$ for all $\eta \in\left[1, v^{-r}\right]$, or equivalently, $\mathcal{F}^{\prime}\left(p_{1}^{*}\right)>0$ for all $p_{1}^{*} \in\left[\frac{1}{2}, p_{1}^{\dagger}\right]$, if

$$
v\left[(2+r) v^{r}-r\right]>\lambda\left(1-v^{r}\right)(r-v),
$$

which implies that $\mathcal{F}\left(p_{1}^{*}\right)$ is uniquely maximized at $p_{1}^{*}=p_{1}^{\dagger}$ on $\left[\frac{1}{2}, p_{1}^{\dagger}\right]$ and it is optimal to have no cap. Note that the above inequality corresponds to (A2) in Proposition A1(ii). This completes the proof.

Proof of Proposition A2

Proof. Note that players of the same type must win with equal probabilities in equilibrium. Therefore, the winning probability distribution $\boldsymbol{p}^{*} \equiv\left(p_{1}^{*}, \ldots, p_{n}^{*}\right)$ is fully characterized by $\left(p_{s}^{*}, p_{w}^{*}\right)$, where p_{s}^{*} and p_{w}^{*} respectively represent the stronger players' and the weaker players' equilibrium winning probabilities. With slight abuse of notation, the set \mathcal{P} defined in (23) can then be simplified as

$$
\mathcal{P}=\left\{\left(p_{s}^{*}, p_{w}^{*}\right): n_{s} p_{s}^{*}+n_{w} p_{w}^{*}=1,1 / n \geq p_{w}^{*} \geq p_{w}^{\dagger}\right\}
$$

where p_{w}^{\dagger} is the equilibrium winning probability of each weaker player under no cap. Normalizing v_{s} to 1 without loss of generality and substituting $p_{s}^{*}=\left(1-n_{w} p_{w}^{*}\right) / n_{s}$ into the contest objective (22), the designer's optimization problem boils down to

$$
\max _{p_{w}^{*} \in\left[p_{w}^{\star}, 1 / n\right]} \mathcal{F}\left(p_{w}^{*}\right),
$$

where $\mathcal{F}(\cdot)$ is given by

$$
\mathcal{F}\left(p_{w}^{*}\right):=(1-\lambda) v_{w}\left(p_{w}^{*}\right)^{1-\frac{1}{r}}\left(1-p_{w}^{*}\right)\left[n_{s}\left(\frac{1-n_{w} p_{w}^{*}}{n_{s}}\right)^{\frac{1}{r}}+n_{w}\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]
$$

$$
\begin{equation*}
+\lambda\left\{n_{s}\left(\frac{1-n_{w} p_{w}^{*}}{n_{s}}\right)^{1-\frac{1}{r}}\left[1-\left(\frac{1-n_{w} p_{w}^{*}}{n_{s}}\right)\right]\left[\left(\frac{1-n_{w} p_{w}^{*}}{n_{s}}\right)^{\frac{1}{r}}-\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]+n v_{w} p_{w}^{*}\left(1-p_{w}^{*}\right)\right\} \tag{A3}
\end{equation*}
$$

Carrying out the algebra, we can obtain that

$$
\begin{align*}
& \mathcal{F}^{\prime}\left(p_{w}^{*}\right)=(1-\lambda) v_{w} \times\left\{\left(1-\frac{1}{r}\right)\left(p_{w}^{*}\right)^{-\frac{1}{r}}\left(1-p_{w}^{*}\right)\left[n_{s}\left(p_{s}^{*}\right)^{\frac{1}{r}}+n_{w}\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]\right. \\
&\left.-\left(p_{w}^{*}\right)^{1-\frac{1}{r}}\left[n_{s}\left(p_{s}^{*}\right)^{\frac{1}{r}}+n_{w}\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]+\left(p_{w}^{*}\right)^{1-\frac{1}{r}}\left(1-p_{w}^{*}\right) n_{w} \frac{1}{r}\left[-\left(p_{s}^{*}\right)^{\frac{1}{r}-1}+\left(p_{w}^{*}\right)^{\frac{1}{r}-1}\right]\right\} \\
&+\lambda \times\left\{\left(\frac{1}{r}-1\right) n_{w}\left(p_{s}^{*}\right)^{-\frac{1}{r}}\left(1-p_{s}^{*}\right)\left[\left(p_{s}^{*}\right)^{\frac{1}{r}}-\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]+n_{w}\left(p_{s}^{*}\right)^{1-\frac{1}{r}}\left[\left(p_{s}^{*}\right)^{\frac{1}{r}}-\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]\right. \\
&\left.-n_{s}\left(p_{s}^{*}\right)^{1-\frac{1}{r}}\left(1-p_{s}^{*}\right) \frac{1}{r}\left[\frac{n_{w}}{n_{s}}\left(p_{s}^{*}\right)^{\frac{1}{r}-1}+\left(p_{w}^{*}\right)^{\frac{1}{r}-1}\right]+n v_{w}\left(1-2 p_{w}^{*}\right)\right\} . \tag{A4}
\end{align*}
$$

Recall that p_{w}^{\dagger} is the equilibrium winning probability of each weaker player under no cap. Therefore, for a flexible cap to be optimal, it suffices to show that $\mathcal{F}^{\prime}\left(p_{w}^{\dagger}\right)>0$ when v_{w} is sufficiently small.

Denote the equilibrium winning probability of each strong player by p_{s}^{\dagger}. We first take a closer look at the equilibrium winning probability $\left(p_{s}^{\dagger}, p_{w}^{\dagger}\right)$ under no cap. From the first-order conditions for each type of players, we have that

$$
\begin{equation*}
\left(p_{s}^{\dagger}\right)^{1-\frac{1}{r}}\left(1-p_{s}^{\dagger}\right)=v_{w}\left(p_{w}^{\dagger}\right)^{1-\frac{1}{r}}\left(1-p_{w}^{\dagger}\right) \tag{A5}
\end{equation*}
$$

Note that $n_{s}=1$ by assumption. Therefore, we have that $p_{s}^{\dagger}=1-n_{w} p_{w}^{\dagger}$. Substituting the expression of p_{s} into the above condition, for a sufficiently small v_{w}, we can obtain that

$$
p_{w}^{\dagger}=\left(\frac{v_{w}}{n_{w}}\right)^{r}[1+o(1)] .
$$

Carrying out the algebra, for a sufficiently small v_{w}, we have that

$$
\begin{aligned}
\mathcal{F}^{\prime}\left(p_{w}^{\dagger}\right)= & (1-\lambda) \times\left\{v_{w}\left(1-\frac{1}{r}\right)\left(\frac{v_{w}}{n_{w}}\right)^{-1}[1+o(1)]+o(1)\right\} \\
& +\lambda \times\left\{n_{w}[1+o(1)]+o(1)\right\} \\
= & \frac{n_{w}}{r}(\lambda+r-1)+o(1)>0
\end{aligned}
$$

where the strict inequality follows from the condition $\lambda+r>1$ assumed in Proposition A2. In other words, there exists a threshold $\hat{v}_{l}(\lambda, r)>0$ such that imposing a flexible cap is optimal to the designer for all $v_{w} / v_{s}<\hat{v}_{l}(\lambda, r)$.

Next, we show that having no cap is optimal if v_{w} is sufficiently large. It is evident that $p_{s}^{\dagger}=1 / n+o(1)$ and $p_{w}^{\dagger}=1 / n+o(1)$ in this case. Therefore, $\mathcal{F}^{\prime}\left(p_{w}^{*}\right)$ in (A4) can be bounded from above by

$$
\begin{aligned}
\mathcal{F}^{\prime}\left(p_{w}^{*}\right)= & (1-\lambda) \times n \times\left[\left(1-\frac{1}{r}\right)\left(1-\frac{1}{n}\right)-n \times \frac{1}{n}+o(1)\right] \\
& +\lambda \times\left[-n \times \frac{1}{r}\left(1-\frac{1}{n}\right)+n \times\left(1-\frac{2}{n}\right)+o(1)\right]<0, \text { for all } p_{w}^{*} \in\left[p_{w}^{\dagger}, 1 / n\right]
\end{aligned}
$$

Therefore, there exists a threshold $\hat{v}_{h}(\lambda, r)>0$ such that having no cap is optimal for all $v_{w} / v_{s}>\hat{v}_{h}(\lambda, r)$. This concludes the proof.

Proof of Proposition A3

Proof. Similar to the proof of Proposition A2, we normalize v_{s} to 1 without loss of generality.
We first consider the case in which v_{w} is sufficiently small. It is evident that $p_{w}^{\dagger}=o(1)$ and $p_{s}^{\dagger}=1 / n_{s}+o(1)$. It follows from the first-order conditions (A5) that

$$
p_{w}^{\dagger}=\frac{1}{n_{s}}\left(\frac{v_{w} n_{s}}{n_{s}-1}\right)^{\frac{r}{1-r}}[1+o(1)] .
$$

By the above equation and (A3), when v_{w} is sufficiently small, we can obtain that

$$
\begin{aligned}
\mathcal{F}\left(p_{w}^{\dagger}\right)= & (1-\lambda) v_{w}\left\{\frac{1}{n_{s}}\left(\frac{v_{w} n_{s}}{n_{s}-1}\right)^{\frac{r}{1-r}}[1+o(1)]\right\}^{1-\frac{1}{r}} n_{s}^{1-\frac{1}{r}}[1+o(1)] \\
& +\lambda \times\left\{n_{s}\left(p_{s}^{\dagger}\right)^{-1}\left(1-p_{s}^{\dagger}\right)[1+o(1)]+o(1)\right\} \\
= & (1-\lambda)\left(1-\frac{1}{n_{s}}\right)+\lambda\left(1-\frac{1}{n_{s}}\right)+o(1)=1-\frac{1}{n_{s}}+o(1) .
\end{aligned}
$$

For $p_{w}^{*}>v_{w}^{\frac{2 r}{2-r}}$, we have that

$$
\begin{aligned}
\mathcal{F}\left(p_{w}^{*}\right)= & (1-\lambda) v_{w}\left(p_{w}^{*}\right)^{1-\frac{1}{r}}\left(1-p_{w}^{*}\right)\left[n_{s}\left(p_{s}^{*}\right)^{\frac{1}{r}}+n_{w}\left(p_{w}^{*}\right)^{\frac{1}{r}}\right] \\
& +\lambda\left\{n_{s}\left(p_{s}^{*}\right)^{1-\frac{1}{r}}\left(1-p_{s}^{*}\right)\left[\left(p_{s}^{*}\right)^{\frac{1}{r}}-\left(p_{w}^{*}\right)^{\frac{1}{r}}\right]+n v_{w} p_{w}^{*}\left(1-p_{w}^{*}\right)\right\} \\
\leq & (1-\lambda) v_{w}\left(p_{w}^{*}\right)^{1-\frac{1}{r}}\left(n_{s} p_{s}^{*}+n_{w} p_{w}^{*}\right)+\lambda\left[n_{s}\left(p_{s}^{*}\right)^{1-\frac{1}{r}}\left(p_{s}^{*}\right)^{\frac{1}{r}}\left(1-p_{s}^{*}\right)+n v_{w} p_{w}^{*}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda) v_{w}\left(p_{w}^{*}\right)^{1-\frac{1}{r}}+\lambda\left[n_{s} p_{s}^{*}\left(1-p_{s}^{*}\right)+n v_{w} p_{w}^{*}\right] \\
& \leq(1-\lambda) v_{w}^{\frac{1}{2-r}}+\lambda\left(1-\frac{1}{n_{s}}+n v_{w}^{\frac{2+r}{2-r}}\right) \\
& =\lambda\left(1-\frac{1}{n_{s}}\right)+o(1)<\mathcal{F}\left(p_{w}^{\dagger}\right)
\end{aligned}
$$

where the last inequality follows from $\lambda<1$.
For $p_{w}^{*} \leq v_{w}^{\frac{2 r}{2-r}}$, it follows from (A4) that

$$
\begin{aligned}
\mathcal{F}^{\prime}\left(p_{w}^{*}\right) & =(1-\lambda) \times\left\{\left(1-\frac{1}{r}\right) v_{w}\left(p_{w}^{*}\right)^{-\frac{1}{r}} n_{s}^{1-\frac{1}{r}}[1+o(1)]\right\}+\lambda \times O(1) \\
& \leq(1-\lambda)\left(1-\frac{1}{r}\right) n_{s}^{1-\frac{1}{r}} v_{w}^{-\frac{r}{2-r}}[1+o(1)]<0
\end{aligned}
$$

To summarize, $\mathcal{F}\left(p_{w}^{*}\right)$ is strictly decreasing in p_{w}^{*} for $p_{w}^{*} \in\left[p_{w}^{\dagger}, v_{w}^{\frac{2 r}{2-r}}\right]$ and $\mathcal{F}\left(p_{w}^{*}\right)<\mathcal{F}\left(p_{w}^{\dagger}\right)$ for all $p_{w}^{*} \in\left(v_{w}^{\frac{2 r}{2-r}}, 1 / n\right]$ if v_{w} is sufficiently small, which in turn implies that there exists a threshold $\underline{v}(\lambda, r)>0$ such that having no cap is optimal for all $v_{w} / v_{s}<\underline{v}(\lambda, r)$.

Next, we consider the case where v_{w} is sufficiently large. In this case, we have that $p_{w}^{\dagger}=1 / n+o(1)$ and $p_{s}^{\dagger}=1 / n+o(1)$. Therefore, for all $p_{w}^{*} \in\left[p_{w}^{\dagger}, 1 / n\right]$, we have that

$$
\begin{aligned}
\mathcal{F}^{\prime}\left(p_{w}^{*}\right)= & (1-\lambda) \times n \times\left[\left(1-\frac{1}{r}\right)\left(1-\frac{1}{n}\right)-n \times \frac{1}{n}+o(1)\right] \\
& +\lambda \times\left[-n \times \frac{1}{r}\left(1-\frac{1}{n}\right)+n \times\left(1-\frac{2}{n}\right)+o(1)\right]<0
\end{aligned}
$$

and thus $\mathcal{F}\left(p_{w}^{*}\right)$ is strictly decreasing in p_{w}^{*}, which implies the optimality of imposing no cap on the contest. Therefore, there exists $\bar{v}(\lambda, r)$ such that having no cap is optimal for all $v_{w} / v_{s}>\bar{v}(\lambda, r)$. This concludes the proof.

[^0]: *Department of Strategy and Policy, National University of Singapore, 15 Kent Ridge Drive, Singapore, 119245. Email: bizfq@nus.edu.sg,
 ${ }^{\dagger}$ School of Economics, Peking University, Beijing, China, 100871. Email: zenan@pku.edu.cn.
 ${ }^{\ddagger}$ School of Economics, Peking University, Beijing, China, 100871. Email: zhuyuxuan@pku.edu.cn.
 ${ }^{1}$ This note is not self-contained; it is the online appendix of the paper "Bid Caps in Noisy Contests."

