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In this online appendix, we collect the analyses and discussions omitted from the main

text that complement our baseline results.1 Four extensions are considered. Online Appendix

A examines the contest game under strong loss aversion. Online Appendix B studies a contest

with a concave impact function. Online Appendix C compares the equilibrium under CPNE

to that under PPNE. Finally, Online Appendix D considers a setting in which two contestants

di↵er in not only their prize valuations but also the degrees of loss aversion.

A Strong Loss Aversion

In this section, we discuss the case of strong loss aversion, i.e., k ⌘ ⌘(��1) > 1/3. We first

show that CPNE may fail to exist when k exceeds the cuto↵ 1/3. Next, we consider a simple

contest design problem in which an e↵ort-maximizing contest designer selects a contender to

rival an incumbent player; the case sheds light on the implications of loss aversion for contest

design.

A.1 Existence and Uniqueness of CPNE

Let us introduce the notation yi := fi(xi) and define the inverse function of fi(·) by

�i(·) := f�1
i (·). The function �i(·) describes the amount of e↵ort required for contestant i to

generate an e↵ective bid yi := fi(xi). We further assume the following.
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Assumption A1 �i(·) is a trice-di↵erentiable function, with �0
i(yi) > 0, �00

i (yi) � 0, �000(yi) �
0, and �i(0) = 0.

Note that Assumption 1 implies immediately that �0
i(yi) > 0, �00

i (yi) � 0, and �i(0) =

0. Compared with Assumption 1, the additional condition required by Assumption A1 is

�000(yi) � 0, which is also assumed by Dato, Grunewald, and Müller (2018). Note that

Assumption A1 is automatically satisfied if the impact function is linear.

Proposition A1 Suppose that Assumption A1 is satisfied and k ⌘ ⌘(�� 1) 2 (13 ,
1
2 ]. Then

either (i) there exists a unique pure-strategy CPNE of the contest game or (ii) there exists

no pure-strategy CPNE.

Proof. The proof closely follows that of Proposition 1. Note that the left-hand side of

Equation (6) in the proof of Proposition 1 is quadratic and is inverted U-shaped in yi on

[0,1) for 1
3 < k  1

2 , and the right-hand side is weakly convex and weakly increasing in yi
under Assumption A1. Therefore, the unique solution in the interval (0, s) is guaranteed,

implying that both gi(s) and ⇢i(s) ⌘ gi(s)/s are well defined on (0,1).

We first show that ⇢0i(s) in Equation (9) is negative, i.e.,

⇢0i(s) = � �0
i (⇢is) + ⇢is⇥ �00

i (⇢is)

(1� 3k + 4k⇢i) vi + s2 ⇥ �00
i (⇢is)

< 0.

Clearly, the numerator in the above expression is strictly positive because �0
i > 0 and �00

i � 0.

For the denominator, we have

(1� 3k + 4k⇢i) vi + s2 ⇥ �00
i (⇢is) � (1� 3k + 4k⇢i) vi + s⇥ �0

i (⇢is)� �0
i (0)

⇢i

> (1� 3k + 4k⇢i) vi +
1� ⇢i
⇢i

(1� k + 2k⇢i) vi �
1

⇢i
(1� k)vi

= 2k⇢ivi � 0,

where the first inequality follows from �000
i � 0, as stated in Assumption A1, and the second

inequality from (8) and s < (1�k)vi
�0
i(0)

.

To complete the proof, it remains to show that �(s) :=
PN

i=1 ⇢i(s) � 1 = 0 has at

most one positive solution for 1
3 < k  1

2 . It can be verified that ⇢i(s) is discontinuous at

s = (1 � k)vi/�0
i(0) for

1
3 < k  1

2 . Moreover, ⇢i(s) is continuous and strictly decreasing in

s for s < (1� k)vi/�0
i(0), and is constant for s � (1� k)vi/�0

i(0). Therefore, �(s) is strictly

decreasing in s for s 2 (0, (1�k)v1
�0
i(0)

], but is discontinuous at s = (1 � k)vi/�0
i(0) with i 2 N .

This implies immediately that �(s) = 0 has at most one positive solution.
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Proposition A1 eliminates the possibility of multiple equilibria: Whenever a CPNE exists,

it must be unique. Interestingly, multiple CPNEs are possible in the framework of Dato et

al. (2017). In particular, they show that an asymmetric equilibrium may exist when players

are su�ciently loss averse, in which one player exerts no e↵ort and the other player exerts

positive e↵ort. Such an equilibrium cannot arise in our framework due to the discontinuity

of the contest success function at the origin.2

Proposition A1 also indicates that a CPNE may fail to exist when k exceeds 1/3. This is

because contestants’ best response may display a discontinuity at a threshold of opponents’

aggregate e↵ort, and rea�rms the observation of Dato et al. (2017, Figure 1). Next, we

provide two examples to briefly discuss equilibrium existence.

Example A1 Suppose that Assumption 2 is satisfied and k 2 [0, 12 ]. Consider a contest that

involves N � 2 homogeneous contestants with v1 = · · · = vN =: v > 0 for all i 2 N . The

following statements hold:

(i) If k 2 [0, N
3N�2 ], then there exists a unique pure-strategy CPNE in which all contestants

exert an e↵ort x⇤ = N�1
N2 v � (N�1)(N�2)

N3 kv.

(ii) If k 2 ( N
3N�2 ,

1
2 ], then the contest game has no pure-strategy CPNE.

Part (ii) of the above example echoes Proposition 2 of Dato et al. (2017): When players

are symmetric, there exists a threshold of the degree of loss aversion above which a CPNE

fails to exist.

We now provide another example to illustrate the subtle impact of loss aversion on the

existence of CPNE when contestants are heterogeneous.

Example A2 Suppose that Assumption 2 is satisfied and k 2 [0, 12 ]. Consider a three-player

contest with (v1, v2, v3) = (1, 0.9, 0.8). There exist two cuto↵s k1 ⇡ 0.3650 and k2 ⇡ 0.4098

such that

(i) For k 2 [0, k1], there exists a unique pure-strategy CPNE in which all three contestants

exert a positive amount of e↵ort.

(ii) For k 2 (k1, k2), the contest game has no pure-strategy CPNE.

(iii) For k 2 [k2,
1
2 ], there exists a unique pure-strategy CPNE, in which contestants 1 and

2 exert a positive amount of e↵ort, whereas contestant 3 remains inactive.

In the same spirit, Figure A1 plots the combination of winning valuations (v1, v2, v3) that

lead to a unique CPNE or no CPNE in three-player contests with k = 0.4.

2To be more specific, once a contestant exerts zero e↵ort, his opponent would sink an infinitesimal amount
of e↵ort to win the contest with probability one. This would both increase his material payo↵ and maximize
his gain-loss utility by completely eliminating the underlying uncertainty of his realized payo↵.

A3



Figure A1: Existence of CPNE in Three-player Contests: k = 0.4.

A.2 Contest Design: Contestant Selection

Next, we discuss the impact of loss aversion on contest design. To most cleanly illuminate

the implication of loss aversion on contest design, we consider the following simple two-player

contest design problem.

A contest designer is running a two-player contest and aims to maximize total e↵ort.

There exists an incumbent player whose valuation of winning the prize is normalized to

one. The designer can select an opponent, denoted by v̂, from a pool of talents/valuations

V = [0,1]. Denote the opponent’s type in the optimal contest by v̂⇤. The following result

can be established:

Proposition A2 Suppose that Assumption 2 is satisfied and k 2 [0, 12 ]. Fix an arbitrary

v̂ 2 V; there always exists a unique CPNE of the two-player contest game. Moreover, v̂⇤ = 1
if k 2 [0, 13 ]; and 1 < v̂⇤ < 1 if k 2 (13 ,

1
2 ].

Proof. It is straightforward to verify that there exists a unique CPNE for all v̂ > 0 from

Propositions 1 and A1, and the equilibrium e↵ort profile is given by Corollary 1. Denote

the total e↵ort of inviting a contestant with winning valuation v̂ by TE(v̂). It follows from

Corollary 1 that

TE(v̂) =
1

1 + ✓(v̂)
� 1� ✓(v̂)

⇥
1 + ✓(v̂)

⇤2k,

where

✓(v̂) :=
1

2

2

4
✓
1

v̂
� 1

◆
⇥ 1 + k

1� k
+

s✓
1

v̂
� 1

◆2

⇥
✓
1 + k

1� k

◆2

+
4

v̂

3

5 .
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Taking the derivative of TE(v̂) with respect to v̂ yields

dTE

dv̂
=

d✓

dv̂
⇥

� 1

(1 + ✓)2
+

3� ✓

(1 + ✓)3
k

�
.

Carrying out the algebra, we can obtain

d✓

dv̂
= �1

2
⇥ 1

v̂2
⇥

2

6664
1 + k

1� k
+

�
1
v̂ � 1

�
⇥

⇣
1+k
1�k

⌘2

+ 2
r

�
1
v̂ � 1

�2 ⇥
⇣

1+k
1�k

⌘2

+ 4
v̂

3

7775
< 0, 8 v̂ > 0.

Suppose that k  1
3 . Then we have that

dTE

dv̂
=

d✓

dv̂
⇥


� 1

(1 + ✓)2
+

3� ✓

(1 + ✓)3
k

�
� �1⇥ d✓

dv̂
⇥ 2

3
✓ > 0, 8 v̂ > 0,

which indicates that v̂⇤ = 1.

Suppose that k > 1
3 . It can be verified that dTE

dv̂ = 0 is equivalent to

✓(v̂) =
3k � 1

k + 1
.

Recall that d✓
dv̂ < 0. Moreover, 0 < 3k�1

k+1 < 1
3 for all k 2 (13 ,

1
2 ], limv̂&1 ✓ = 2, and limv̂%1 ✓ = 0.

Therefore, there exists a unique solution to the above equation and thus v̂⇤ 2 (1,1). This

completes the proof.

By Proposition A2, an e↵ort-maximizing contest designer will select an opponent who is

moderately stronger than the incumbent to stimulate the incumbent when contestants are

su�ciently loss averse. This result stands in stark contrast to the optimal ability selection

problem with standard preferences. Suppose that k = 0. In equilibrium, the incumbent

exerts e↵ort v̂/(1 + v̂)2, and the opponent exerts e↵ort v̂2/(1 + v̂)2. Simple algebra shows

that total e↵ort amounts to v̂/(1+v̂), which is strictly increasing in v̂. Therefore, the designer

would select the strongest player from the pool of talent.

B Concave Impact Function

In this part, we consider a concave impact function and show that our main results

continue to hold. In particular, we assume that the impact function takes the form of

fi(xi) = (xi)r, with r  1 throughout the section. A smaller r implies that winner selection

in the contest depends less on their e↵ort input and more on luck.

A5



B.1 Two-player Contests

We begin with a two-player contest and examine the robustness of Proposition 3 in

Section 3.1.

Symmetric Players Part (i) of Proposition 3 naturally extends: With symmetric players

(i.e.,v1 = v2 =: v), each wins with a probability 1/2 in equilibrium, which diminishes the

marginal e↵ect of a variation in pi on pi(1 � pi). As a result, loss aversion does not a↵ect

contestants’ equilibrium e↵ort, and each player exerts an e↵ort rv/4 in equilibrium, as under

standard preferences.

Figure A2: Impact of Reference-dependent Preferences on Incentives in Two-player Contests.

Asymmetric Players Although equilibrium existence and uniqueness can be ensured by

Proposition 1, a closed-form profile cannot be obtained in general when players are heteroge-

neous. We conduct numerical exercises to explore the implications of loss aversion. Figure A2

illustrates the comparison between the equilibrium e↵ort profile when contestants are loss

averse (k = 0.01) and the counterpart under standard preferences (k = 0). The horizontal

axis traces v2/v1 2 (0, 1) and the vertical axis depicts r 2 (0, 1).

In line with Proposition 3(ii), loss aversion always reduces the underdog’s equilibrium

e↵ort x⇤
2, whereas the favorite may either increase or decrease x⇤

1. The region of (v2/v1, r) to

the right (respectively, to the left) of the dashed curve depicts the combinations of (v2/v1, r)

under which the favorite increases (decreases) his equilibrium e↵ort relative to the case of

k = 0. Two observations are noteworthy. First, when r is large (e.g., r = 0.8), the favorite
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increases (reduces) his e↵ort when the degree of player heterogeneity is moderate (large).

Second, when r is small (e.g., r = 0.4), the favorite always increases his e↵ort regardless of

the degree of player heterogeneity.

These observations confirm the tension between the uncertainty-reducing e↵ect and the

competition e↵ect identified in the baseline setting. A small r amplifies the former and

diminishes the latter. Recall that the uncertainty is measured by the term pi(1 � pi). The

uncertainty-reducing e↵ect compels the favorite to step up his e↵ort (i.e., increasing p1) and

the underdog to concede (i.e., decreasing p2); the favorite is tempted to slack o↵ in response

to the less aggressive opponent, which leads to the competition e↵ect. A smaller r implies

a noisier winner-selection mechanism and lower marginal return on one’s e↵ort. As a result,

the favorite has to supply a larger amount of extra e↵ort to achieve a given increase in p1;

conversely, the competition e↵ect is limited because the noise erodes his lead, which prevents

him from slacking o↵. With a smaller r, the competition e↵ect is less likely to outweigh the

uncertainty-reducing e↵ect. In contrast, with a larger r, the model converges to our baseline

setting and the observation echoes the result in Proposition 3(ii); i.e., the favorite increases

his e↵ort under moderate asymmetry.

B.2 Contests with Three or More Contestants

Next, we consider contests with three or more contestants and examine the robustness of

Propositions 4 and 5 in Section 3.2.

Symmetric Players Suppose that k 2 [0, 13 ] and the contest involves N � 3 homogeneous

contestants, with v1 = · · · = vN =: v > 0 for all i 2 N . Simple algebra would verify that all

contestants exert an e↵ort

x⇤(k) =
N � 1

N2

✓
1� N � 2

N
k

◆
rv

in the unique CPNE, which strictly decreases with k. The comparative statics in Proposi-

tion 4 for the case of r = 1 are perfectly retained in the case of r < 1.

Asymmetric Players The subsequent discussion allows for asymmetric players. In con-

trast to the case of a linear impact function (r = 1), all contestants remain active when the

impact function is concave (r < 1). Although a formal proof is unavailable, numerical results

suggest that the equilibrium outcomes remain largely consistent.

Recall that Proposition 5 predicts three possible cases under linear impact functions.

In case (a), loss aversion leads all contestants to reduce their e↵orts. In case (b), strong

contestants step up their e↵orts, while the weaker do the opposite. Case (c) reports a
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Case a

Case b

Case a

Case c

Case b

Case a

(a) Ten players: v1 � v2 � v3 = · · · = v10

Case a

Case a

Case b

(b) Four players: v1 � v2 � v3 = v4

Case b

Case a

Case a

Case c

Case b

(c) Ten players: v1 � v2 � v3 = · · · = v10

Case a

Case b

Case a

Case c

Case b

(d) Four players: v1 � v2 � v3 = v4

Figure A3: Impact of Reference-dependent Preferences on Player Incentives with a Concave
Impact Function.

nonmonotone scenario, in which a set of middle contestants increase their e↵orts and the

rest concede. Figure A3 compares the equilibrium outcomes when contestants are loss averse

(k = 0.01) with the counterparts under standard preferences (k = 0). Three cases may

emerge, as in Figure 3.

The left panel [Figures 3(a) and 3(c)] depicts a scenario of 10 contestants (v1 � v2 �
v3 = · · · = v10) and the right panel [Figures 3(b) and 3(d)] represents one of four contestants

(v1 � v2 � v3 = v4). The upper panel assumes r = 0.95 and the lower panel depicts the case
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of r = 0.99.

Our discussion focuses on case (c). Comparing the left panel with the right panel, it is

straightforward to observe that case (c) is more likely to occur when more weak players are

added to the contest, which is consistent with the observations in Section 3.2. A comparison

between the upper panel [Figures 3(a) and 3(b)] and the lower panel [Figures 3(c) and 3(d)]

implies that case (c) is more likely when r increases.

C PPNE and CPNE

Recall that the PPNE may depart from the CPNE when ⌘ is su�ciently large. We now

demonstrate in two examples that the main results derived under the equilibrium concept of

CPNE in Section 3 remain qualitatively intact under the alternative concept of PPNE.

C.1 PPNE and CPNE in Two-Player Contests

Suppose that fi(xi) = xi, N = 2, and v1 � v2. The unique pure-strategy CPNE coincides

with the unique pure-strategy PPNE if and only if

v1
v2

 1 +

⇣
1+⌘�
⌘�

⌘2

� 1

1+⌘�
⌘� ⇥ 1�⌘+⌘�

1+⌘�⌘� + 1
.

Set � = 1.25 and ⌘ = 1, and normalize v2 = 1 without loss of generality. Then the CPNE is

the same as the PPNE when v1/v2  39/25 = 1.56.

Figure A4 reports contestants’ equilibrium e↵ort profile, total e↵ort, and the equilibrium

winning probability of the strong contestant in the unique CPNE and PPNE under di↵erent

levels of v1/v2, as well as the counterparts under standard preferences, i.e., ⌘ = 0. Three

remarks are in order. First, by Figure 4(a), the weak contestant always exerts a lower e↵ort

in the PPNE with the presence of loss aversion than he would under standard preferences.

In contrast, loss aversion leads the strong contestant to raise his e↵ort if v1/v2 is su�ciently

small. These observations a�rm the results of Proposition 3 under CPNE. Second, by

Figure 4(b), the total e↵ort of loss-averse contestants in the PPNE is always less than that

under standard preferences, which echoes the claim of Proposition 7. Finally, by Figure 4(c),

loss aversion causes the equilibrium winning odds to bifurcate between the strong contestant

and the weak one in the PPNE. Specifically, the strong contestant is more likely to prevail

in the competition when ⌘ increases from 0 to 1. This observation, again, is consistent with

Proposition 8.
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(a) Equilibrium E↵ort (b) Total E↵ort

(c) Equilibrium Winning Probability

Figure A4: PPNE vs. CPNE: (N, v2,�) = (2, 1, 1.25).

C.2 PPNE and CPNE in Contests with Three or More Contes-

tants

We now consider a multi-player contest. Suppose that fi(xi) = xi. Set (N,�) = (8, 1.2),

and v ⌘ (v1, v2, . . . , v8) = (2.8, 2.7, . . . , 2.1). The following table reports the equilibrium

winning probability profile in the unique CPNE and PPNE when the contestants are loss

averse (i.e., ⌘ = 1), as well as that under standard preferences (i.e., ⌘ = 0).

⌘
Equilibrium

concept
p⇤1 p⇤2 p⇤3 p⇤4 p⇤5 p⇤6 p⇤7 p⇤8

Total

e↵ort

0 NE/CPNE/PPNE 0.2396 0.2115 0.1811 0.1484 0.1129 0.0743 0.0322 0 2.1291

1 CPNE 0.2879 0.2486 0.2039 0.1522 0.0910 0.0164 0 0 1.8247

1 PPNE 0.2479 0.2177 0.1851 0.1495 0.1106 0.0680 0.0211 0 1.9619
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CPNE and PPNE di↵er for ⌘ = 1. However, the main predictions obtained in Proposi-

tions 7 and 8 under the CPNE remain largely intact under the PPNE. Specifically, the equi-

librium winning distributions under both CPNE and PPNE become more dispersed when

contestants are loss averse, compared with that under standard preferences (i.e., ⌘ = 0). In

particular, the strongest (weakest) four contestants have higher (lower) winning odds when

⌘ = 1 than when ⌘ = 0, regardless of the equilibrium concept. Moreover, the total e↵ort of

the contest decreases when loss aversion is in place: Under CPNE, it drops from 2.1291 to

1.8247, while under PPNE, it reduces to 1.9619.

D Heterogeneous Loss Aversion

In our baseline model, we assume that contestants are subject to the same level of loss

aversion. We now analyze a two-player contest in which contestants may di↵er in their prize

valuations and/or loss aversion. We first characterize the unique CPNE. We then study the

impact of loss aversion on players’ e↵ort incentives and show that the main results derived

in Proposition 3 are robust.

Consider a two-player contest and suppose that the prize valuation and loss aversion

of player i 2 {1, 2} are vi > 0 and ki 2 [0, 13 ], respectively, with v1 � v2 > 0. We first

characterize the CPNE of the game. Denote by
�
x⇤
1(k1, k2), x

⇤
2(k1, k2)

�
the equilibrium e↵ort

profile. We establish the following result in parallel to that in Corollary 1.

Proposition A3 Suppose that Assumption 2 is satisfied, k1, k2 2 [0, 13 ], and N = 2. The

equilibrium e↵ort pair
�
x⇤
1(k1, k2), x

⇤
2(k1, k2)

�
is given by

x⇤
1(k1, k2) =

⇥

(1 +⇥)2
v1 �

⇥(1�⇥)

(1 +⇥)3
k1v1, (A1)

and

x⇤
2(k1, k2) =

1

(1 +⇥)2
v1 �

1�⇥

(1 +⇥)3
k1v1, (A2)

where

⇥ =
1

2

2

4v1
v2

⇥ 1 + k1
1� k2

� 1 + k2
1� k2

+

s✓
v1
v2

⇥ 1 + k1
1� k2

� 1 + k2
1� k2

◆2

+
4v1
v2

⇥ 1� k1
1� k2

3

5 . (A3)

Proof. The proof is similar to that of Corollary 1. It follows from the first-order conditions
@ bU1(x1,x⇤

2)
@x1

���
x1=x⇤

1

= 0 and @ bU2(x2,x⇤
1)

@x2

���
x2=x⇤

2

= 0 that

x⇤
2

(x⇤
1 + x⇤

2)
2
v1 �

x⇤
2(x

⇤
2 � x⇤

1)

(x⇤
1 + x⇤

2)
3
k1v1 = 1, (A4)
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and
x⇤
1

(x⇤
1 + x⇤

2)
2
v2 �

x⇤
1(x

⇤
1 � x⇤

2)

(x⇤
1 + x⇤

2)
3
k2v2 = 1. (A5)

Let ⇥ := x⇤
1/x

⇤
2. The above first-order conditions can be rewritten as

1

1 +⇥
v1 �

1�⇥

(1 +⇥)2
k1v1 = x⇤

1 + x⇤
2,

and
⇥

1 +⇥
v2 �

⇥(⇥� 1)

(1 +⇥)2
k2v2 = x⇤

1 + x⇤
2.

Combining the above two equations yields

(1� k2)⇥
2 �


v1
v2
(1 + k1)� (1 + k2)

�
⇥� v1

v2
(1� k1) = 0. (A6)

Solving for ⇥, we can obtain that

⇥ =
1

2

2

4v1
v2

⇥ 1 + k1
1� k2

� 1 + k2
1� k2

+

s✓
v1
v2

⇥ 1 + k1
1� k2

� 1 + k2
1� k2

◆2

+
4v1
v2

⇥ 1� k1
1� k2

3

5 .

Substituting the above expression and ⇥ ⌘ x⇤
1/x

⇤
2 into (A4) and (A5), we can solve for

x⇤
1(k1, k2) and x⇤

2(k1, k2) as specified in (A1) and (A2).

Proposition A3 allows us to carry out the comparative statics of players’ equilibrium ef-

forts with respect to loss aversion. To proceed, we parameterize (k1, k2) such that k1 = k

and k2 = ↵k, with ↵ 2 (0,1). We write the equilibrium e↵ort profile
�
x⇤
1(k1, k2), x

⇤
2(k1, k2)

�

established in Proposition A3 as
�
x⇤
1(k), x

⇤
2(k)

�
with slight abuse of notation. We fix the

degree of heterogeneity between the two contestants—i.e., ↵—and examine how their equi-

librium e↵orts vary with the general level of loss aversion, i.e., k. The following result similar

to Proposition 3 can be obtained.

Proposition A4 Suppose that Assumption 2 is satisfied and N = 2. The following state-

ments hold:

(i) If v1 = v2 =: v, then x⇤
1(k) = x⇤

2(k) =
1
4v and hence dx⇤

1
dk

��
k=0

= dx⇤
2

dk

��
k=0

= 0.

(ii) If v1 > v2, then
dx⇤

2
dk

��
k=0

< 0. Moreover, dx⇤
1

dk

��
k=0

> 0 if and only if v1
v2

< 1 + 2
↵ .

Proof. Part (i) of the proposition is obvious and it remains to prove part (ii). Let ` :=

v1/v2 > 1. Equation (A6) can be written as

(1� ↵k)⇥2 �
⇥
`(1 + k)� (1 + ↵k)

⇤
⇥� `(1� k) = 0.
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In what follows, we add k to ⇥ to emphasize that ⇥ depends on k. It follows from the above

equation and the implicit function theorem that

d⇥(k)

dk
=

↵
⇥
⇥(k)

⇤2
+ (`� ↵)`� `

2(1� ↵k)⇥(k)� [`(1 + k)� (1 + ↵k)]
.

Further, we can obtain ⇥(0) = ` from (A3). Therefore,

d⇥(k)

dk

����
k=0

= (1 + ↵)⇥ `(`� 1)

`+ 1
> 0. (A7)

Di↵erentiating x⇤
1(k) in (A1) with respect to k yields

dx⇤
1(k)

dk
=

1�⇥(k)
⇥
1 +⇥(k)

⇤3 ⇥ d⇥(k)

dk
⇥ v1 �

2

4 1� 2⇥(k)
⇥
1 +⇥(k)

⇤3 �
3⇥(k)

⇥
1�⇥(k)

⇤
⇥
1 +⇥(k)

⇤4

3

5⇥ d⇥(k)

dk
⇥ kv1

�
⇥(k)

⇥
1�⇥(k)

⇤

(1 +⇥)3
⇥ v1.

From the above equation and (A7), we can obtain that

dx⇤
1(k)

dk

����
k=0

? 0 , ` 7 1 +
2

↵
.

Similarly, we can show that

dx⇤
2(k)

dk

����
k=0

= �(`� 1)[(1 + 2↵)`� 1]

(1 + `)4
⇥ v1 < 0.

This concludes the proof.

In conclusion, the predictions obtained under heterogeneous loss aversion do not qualita-

tively depart from those obtained in the baseline model.
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