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We assume in the main text that contestants are endowed with the same contest
technology h(·) and effort cost function c(·). In Section 2, we demonstrate that our base-
line analysis would be immune to a variation in which each contestant bears an effort
cost c(xi)/di. In this supplemental material, we show that many of our results do not
depend on this modeling specification.

We now allow the heterogeneity in contestants’ contest technologies and effort cost
functions to be more generally modeled. Let one’s impact function take the form

fi(xi;αi�βi)= αi · hi(xi)+βi

and let the effort cost function be ci(xi), where hi(·) and ci(·) satisfy the following stan-
dard regularity conditions.

Assumption S1 (Concave Contest Technology and Convex Effort Cost Function). The
contest technology hi(·) and effort cost function ci(·) are assumed to have the following
properties:

(i) The technology hi(·) is twice differentiable, with hi(0) = 0, h′
i(x) > 0, and h′′

i (x) ≤ 0
for all x > 0.

(ii) The cost function ci(·) is twice differentiable, with ci(0) = 0, c′
i(x) > 0, and c′′

i (x) ≥ 0
for all x > 0.

Theorem 1 in our baseline analysis proves the existence and uniqueness of pure-
strategy equilibrium in a regular concave contest, which is established assuming a gen-
eral concave impact function fi(·). This result obviously would not vary when the
cost function is heterogeneous. To see this, define ĉi := ci(xi), ĉ := (̂c1 � � � � ĉn), and
f̂i(̂ci) := fi(c

−1
i (̂ci)); each contestant equivalently maximizes an expected payoff

π̂i(̂c) := f̂i(̂ci)
n∑

j=1

f̂j (̂cj)

vi − ĉi.
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The transformation leads to a regular concave contest that satisfies the requirements of
Definition 1, and Theorem 1 naturally extends.

Next we show that Theorems 2 and 3 and Propositions 1 and 2 would also remain
qualitatively unchanged. We first obtain the following theorem.

Theorem S1 (Suboptimality of Head start with Heterogeneous Contest Technologies
and Cost Functions). Suppose that Assumptions 2 and S1 are satisfied. The optimum
can always be achieved by choosing multiplicative biases α only and setting head starts β
to zero.

Proof. We follow the notation in the main text and denote the optimal contest rule
that maximizes �(x�p�v) by (α∗�β∗) ≡ ((α∗

1� � � � �α
∗
n)� (β

∗
1� � � � �β

∗
n)); denote the corre-

sponding equilibrium effort profile and winning probabilities by x∗ ≡ (x∗
1� � � � � x

∗
n) and

p∗ ≡ (p∗
1� � � � �p

∗
n), respectively.

Suppose, to the contrary, that β∗
t > 0 for some t ∈ N in the optimum. Let us focus on

the case of an active contestant t (i.e., x∗
t > 0). The equilibrium condition is given by

p∗
t

(
1 −p∗

t

)
vt = c′

t

(
x∗
t

) · α
∗
t ht

(
x∗
t

) +β∗
t

α∗
t h

′
t

(
x∗
t

) �

Denote by x† the unique solution to

c′
t

(
x∗
t

) · α
∗
t ht

(
x∗
t

) +β∗
t

α∗
t h

′
t

(
x∗
t

) = c′
t

(
x†) · ht

(
x†)

h′
t

(
x†) � (S1)

Simple analysis would verify that x† > x∗
t , given β∗

t > 0. Consider an alternative contest
rule with α̃≡ (̃α1� � � � � α̃n) and β̃≡ (β̃1� � � � � β̃n), such that

(̃αi� β̃i) :=

⎧⎪⎨⎪⎩
(
α∗
t ht

(
x∗
t

) +β∗
t

ht
(
x†) �0

)
for i = t�(

α∗
i �β

∗
i

)
for i �= t�

In words, all contestants are awarded the same identity-dependent treatment as before
except for contestant t. The new contest rule removes the head start for contestant t.
Simple algebra verifies that the equilibrium effort profile under the new contest rule
(α̃� β̃), which we denote by x̃∗ ≡ (x̃∗

1� � � � � x̃
∗
n), is given by

x̃∗
i =

{
x† for i = t�

x∗
i for i �= t�

The new contest rule outperforms under Assumption 2. It induces the same winning
probability distribution, because α̃t · ht(x

†)+ β̃t = α∗
t · ht(x

∗
t ) + β∗

t by our construction,
while the effort of contestant t strictly increases because x† > x∗

t by (S1).
The proof for the case of inactive contestant t (i.e., x∗

t = 0) is similar and is omitted
for brevity. This completes the proof.
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We thus verify the robustness of Theorem 2 in the extended setting, which allows us
to simplify the optimization problem by focusing only on the optimal choice of α. By
Theorem S1,

pi(1 −pi)vi = c′
i(xi) · hi(xi)

h′
i(xi)

∀i ∈ N (S2)

must hold in an equilibrium. Define the inverse of log(c′
i(x) · hi(x)/h

′
i(x)) as gi(·). Then

the correspondence (S2) can be rewritten as

xi = gi
(
log

(
pi(1 −pi)

) + log(vi)
) ∀i ∈ N � (S3)

We further obtain the following theorem, which, together with the correspondence, re-
instates our optimization approach.

Theorem S2 (Implementing Winning Probabilities by Setting Biases with Heteroge-
neous Contest Technologies and Cost Functions). Fix any equilibrium winning prob-
ability distribution p ≡ (p1� � � � �pn) ∈ �n−1.

(i) If pj = 1 for some j ∈ N , then p ≡ (p1� � � � �pn) can be induced by the following set
of biases α(p)≡ (α1(p)� � � � �αn(p)):

αi(p)=
{

1 if i = j�

0 if i �= j�

(ii) If there exist at least two active contestants, then p ≡ (p1� � � � �pn) can be induced
by the following set of biases α(p)≡ (α1(p)� � � � �αn(p)):

αi(p) =
⎧⎨⎩

pi

hi

(
gi

(
log

(
pi(1 −pi)

) + log(vi)
)) if pi > 0�

0 if pi = 0�
(S4)

Proof. Part (i) of the theorem is trivial and it remains to show part (ii). It is clear
that xi = 0 is a strictly dominant strategy if αi = 0. For (pi�pj) > (0�0), we must have
(xi�xj) > (0�0). Therefore, the first-order conditions

xi = gi
(
log

(
pi(1 −pi)

) + log(vi)
)

xj = gi
(
log

(
pj(1 −pj)

) + log(vj)
)

must be satisfied by (S3). Note that (1) implies that

pi

pj
=

αi · hi(xi)
n∑

k=1

αk · hk(xk)

αj · hi(xj)
n∑

k=1

αk · hk(xk)

= αi · hi(xi)

αj · hj(xj)
�
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Combining the above conditions, we can obtain that

αi

αj
= pi/hi(xi)

pj/hj(xj)
=

pi

hi

(
gi

(
log

(
pi(1 −pi)

) + log(vi)
))

pj

hj

(
gj

(
log

(
pj(1 −pj)

) + log(vj)
)) �

The last equation clearly holds for the set of weights specified in (S4). This completes
the proof.

This restores Theorem 3 in our baseline setting, which states that any winning prob-
ability distribution can be induced in equilibrium by an α. We then proceed to apply
our approach to optimal design for the maximization of total effort and the expected
winner’s effort.

Proposition S1 (Total-effort-maximizing Contests with Heterogeneous Contest Tech-
nologies and Cost Functions). Suppose that n ≥ 2, Assumption S1 is satisfied, and the
designer aims to maximize total effort. Then the following statements hold:

(i) The optimal contest allows for at least three active players if possible.

(ii) The optimal contest does not allow any contestant to win with a probability more
than 1/2, i.e., p∗

i ≤ 1/2 ∀i ∈ N , with equality if and only if n = 2.

Proof. The same logic as that in the main text would reveal p∗
1 = p∗

2 = 1
2 in the optimum

when n = 2. We now verify the claim for the case of n ≥ 3. We first prove part (i) of the
proposition. Suppose, to the contrary, that only two players remain active in the optimal
contest. It is clear that p∗

1 = p∗
2 = 1

2 in the optimum. Without loss of generality, assume
that contestants 1 and 2 are active. Now consider the following profile of equilibrium
winning probabilities p = ( 1

2 �
1
2 − ε� ε�0� � � � �0). It can be verified that the total effort

under p is equal to

�(x�p�v) = g1

(
log

(
1
4

)
+ log(v1)

)
+ g2

(
log

(
1
4

− ε2
)

+ log(v2)

)
+ g3(

(
log

(
ε(1 − ε)

) + log(v3)
)
�

Simple algebra shows that ∂�/∂ε > 0 when ε is sufficiently small. Therefore, at least
three players will remain active in the optimum.

Next, we prove part (ii). Suppose, to the contrary, that p∗
i ≥ 1

2 for some i ∈ N . If
p∗
i >

1
2 , then the contest designer can assign probability 1 −p∗

i to contestant i and prob-
ability p∗

j + (2p∗
i − 1) to an arbitrary contestant j �= i. Because at least three players

remain active in the optimum, we must have p∗
i + p∗

j < 1. This in turn implies that

|p∗
j + (2p∗

i − 1) − 1
2 | < |p∗

j − 1
2 |, and, thus, contestant j’s effort strictly increases. Fur-

thermore, it follows from (S3) that contestant i’s effort remains the same. Therefore, the
total effort strictly increases after the adjustment. If p∗

i = 1
2 , then there exists an active

player j ∈ N such that pj ∈ (0� 1
2), because at least three players remain active in the op-

timum. In such a scenario, the designer can increase the total effort by reducing p∗
i by
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a sufficiently small amount and increasing p∗
j by the same amount. This completes the

proof.

The result of Proposition 1 in the baseline analysis is perfectly preserved. We then
examine the case of maximizing the expected winner’s effort.

Proposition S2 (Optimal Contest that Maximizes the Expected Winner’s Effort with
Heterogeneous Contest Technologies and Cost Functions). Suppose that Assumption S1
is satisfied and the designer aims to maximize the expected winner’s effort. Then only two
contestants would remain active in the optimal contest.

Proof. It is useful to prove the following intermediate result first.

Lemma S1. Consider a contest with three players who are indexed by i, j, and k. Suppose
that the contest designer aims to maximize the expected winner’s effort. Then setting pi =
pj = pk = 1

3 is suboptimal.

Proof. Without loss of generality, we assume that

gi

(
log

(
2
9

)
+ log(vi)

)
≥ gj

(
log

(
2
9

)
+ log(vj)

)
≥ gk

(
log

(
2
9

)
+ log(vk)

)
�

The difference between the expected winner’s effort under (pi�pj�pk) = ( 1
2 �

1
2 �0) and

that under (pi�pj�pk) = ( 1
3 �

1
3 �

1
3) can be derived as[

1
2
gi

(
log

(
1
4

)
+ log(vi)

)
+ 1

2
gj

(
log

(
1
4

)
+ log(vj)

)]
−

[
1
3
gi

(
log

(
2
9

)
+ log(vi)

)
+ 1

3
gj

(
log

(
2
9

)
+ log(vj)

)
+ 1

3
gk

(
log

(
2
9

)
+ log(vk)

)]
>

1
6

[
gi

(
log

(
2
9

)
+ log(vi)

)
− gj

(
log

(
2
9

)
+ log(vj)

)]
≥ 0�

where the strict inequality follows from 1
4 > 2

9 , gj(log( 2
9)+ log(vj)) ≥ gk(log( 2

9)+ log(vk)),
and the monotonicity of gi(·), gj(·), and gk(·). Therefore, setting pi = pj = pk = 1

3 is
suboptimal. This completes the proof.

Now we can prove the proposition. Suppose, to the contrary, that three or more
players remain active in the optimal contest. Then there exist i� j�k ∈ N such that p∗∗

i ≥
p∗∗
j > 0 and p∗∗

i ≥ p∗∗
k > 0. Lemma S1 implies that min{2p∗∗

j + p∗∗
k �p∗∗

j + 2p∗∗
k } < 1. Let

p∗∗
jk := p∗∗

j +p∗∗
k . Without loss of generality, suppose that

gj
(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vj)
) ≥ gk

(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vk)
)
�
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It follows immediately that

gj
(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vj)
) ≥ gk

(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vk)
)

> gk
(
log

(
p∗∗
k

(
1 −p∗∗

k

)) + log(vk)
)
� (S5)

where the strict inequality follows from min{2p∗∗
j + p∗∗

k �p∗∗
j + 2p∗∗

k } < 1 and the mono-
tonicity of gk(·). Suppose that the contest designer assigns probability p∗∗

jk := p∗∗
j + p∗∗

k

to player j and 0 to player k, and does not change the equilibrium winning probability
of all other players. Then the difference between the expected winner’s effort under the
new profile of winning probabilities and that under p∗∗ ≡ (p∗∗

1 � � � � �p∗∗
n ) can be derived

as (
p∗∗
j +p∗∗

k

)
gj

(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vj)
)

− [
p∗∗
j gj

(
log

(
p∗∗
j

(
1 −p∗∗

j

)) + log(vj)
) +p∗∗

k gk
(
log

(
p∗∗
k

(
1 −p∗∗

k

)) + log(vk)
)]

= p∗∗
j

[
gj

(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vj)
) − gj

(
log

(
p∗∗
j

(
1 −p∗∗

j

)) + log(vj)
)]

+p∗∗
k

[
gj

(
log

(
p∗∗
jk

(
1 −p∗∗

jk

)) + log(vj)
) − gk

(
log

(
p∗∗
k

(
1 −p∗∗

k

)) + log(vk)
)]

> 0�

where the strict inequality follows from min{2p∗∗
j +p∗∗

k �p∗∗
j + 2p∗∗

k }< 1, the monotonic-
ity of gj(·), and (S5)—a contradiction. Therefore, only two contestants would remain
active in the optimal contest. This completes the proof.

Proposition 2 states that only two active contestants remain in the optimum. This
continues to hold in the extended setting.

In conclusion, most of our results would qualitatively hold when the heterogeneity
in contest technologies and effort cost functions are generally modeled. However, en-
capsulating contestants’ heterogeneity into the difference in their prize valuations—or
the cost parameter di as in the isomorphic setting—provides a convenient measure or
definition of contestants’ strength, and allows for handy and lucid comparative statics,
which gives rise to Theorem 4 (the general exclusion principle), one part of Proposition 2
(winning probability ranking for the maximization of the expected winner’s effort), and
Proposition 3 (winning probability ranking under total effort maximization). All of these
results provide comparative statics of winning probability rankings with respect to the
difference in contestants’ prize valuations.
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