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Abstract
We consider a two-period model in which the success of the firm depends on the

effort of a first-period manager (the incumbent) as well as the effort and ability of

a second-period manager. At the end of the first period, the board receives a noisy

signal of the incumbent manager's ability and decides whether to retain or replace

the incumbent manager. We show that severance pay can be utilized in the optimal

contract to provide a credible commitment to a lenient second-period equilibrium

replacement policy, mitigating the first-period moral hazard problem. Unlike existing

models that aim to rationalize managerial entrenchment, we identify conditions on the

information structure under which both entrenchment and anti-entrenchment emerge

in the optimal contract. Specifically, our model predicts that it is optimal for the board

to design a contract to induce entrenchment (respectively, anti-entrenchment) if the

signal regarding the incumbent manager's ability becomes sufficiently uninformative

(respectively, informative).

1 INTRODUCTION

Designing compensation schemes in managerial contracts and deciding whether to replace a manager, such as a CEO, are

important firm organization activities. These decisions are linked through the severance agreement, a key component of the

contracts between boards and managers. The severance agreement specifies payments to the manager upon his forced departure.

Approximately, 50% of the CEO compensation contracts implemented between 1994 and 1999 involved some form of severance

agreement (Rusticus, 2006). The percentage of S&P 500 firms that included a severance agreement in their CEO compensation

contracts increased from 20% in 1993 to more than 55% in 2007 (Huang, 2011). In general, a contract with a severance agreement

adds an explicit cost to the board's retention decision and makes replacement more difficult relative to a compensation contract

without such an agreement.

A widely held belief is that CEOs are replaced too infrequently, that is, they become entrenched.1 Entrenchment may arise

for many reasons. For example, it may be due to governance failure in the form of a captive board of directors (Hermalin &

Weisbach, 1998; Inderst & Mueller, 2010; Shleifer & Vishny, 1989) or a way to mitigate a moral hazard problem (Almazan

& Suarez, 2003; Casamatta & Guembel, 2010; Manso, 2011). Taylor (2010) makes the first attempt to measure the cost of

entrenchment using a structural model of CEO turnover and finds suggestive evidence of the opposite. In particular, he finds

that boards in large firms fire CEOs with higher frequency than is optimal. We refer to this phenomenon as anti-entrenchment.
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This finding cannot be rationalized by the existing models on CEO turnover and thus calls for a new model to better understand

the determinants of managerial turnover.

This paper investigates how optimal design of the severance agreement influences managerial entrenchment. A manager is

said to be entrenched (or anti-entrenched) if the board retains (fires) him when his expected ability is lower (higher) than that

of a replacement manager. We propose a two-period principal–agent model of managerial turnover and identify conditions that

predict the emergence of entrenchment and anti-entrenchment. Formally, we consider a setup in which the first-period manager

is incentivized by a contract that contains performance-related pay and severance pay. The firm's success depends on the initial

manager's effort, the second-period manager's effort and his ability. Thus, the board faces an ability selection problem and a

period-1 moral hazard problem. After the initial manager exerts effort, the board observes a noncontractible signal regarding

his ability. The board can fire the initial manager by paying the severance pay specified in the contract and hire a replacement

manager.

Severance pay can be utilized in the optimal contract to provide a credible commitment to a lenient period-2 equilibrium

replacement policy, which mitigates the period-1 moral hazard problem and influences the period-2 manager's expected ability.

To see how the use of severance pay can be desirable for the board, it is useful to consider a contract with zero severance pay,

under which the board is able to dismiss the incumbent at will. Because the wage is only paid at the end of the second period,

the board will always prefer to fire the first-period manager if he is of the same ability as the replacement manager, so as to avoid

paying the higher promised wage. Such a zero-severance-pay contract, however, may not be in line with the interest of the board.

With a contract of zero severance pay in hand, the incumbent manager would expect an aggressive replacement policy and thus

would not exert much first-period effort. In such a case, the board can commit to a positive severance payment, ensuring a low

expected profit for itself after replacement. This would in turn lead to a less aggressive replacement policy, provide more job

security to the incumbent manager, and thus mitigate the period-1 moral hazard problem at the cost of the expenditure from

the severance agreement. Meanwhile, the introduction of a positive severance pay in the contract affects the expected ability

of the second-period manager: the higher the severance pay, the lower the expected ability of the manager who is retained to

save the cost. Therefore, the optimal contract must strike a balance between incentive provision, manager ability selection, and

commitment cost.

Our main result characterizes the optimal replacement policy and shows how it depends on the precision of the signal of the

manager's ability. When the monitoring technology is noisy, entrenchment is optimal. In such a scenario, the board places higher

priority on motivating the incumbent manager to exert period-1 effort than on maximizing the manager's ability. Designing a

contract to induce an aggressive replacement policy will too often result in the firing of the incumbent of high ability and will

disincentivize the incumbent to exert effort, while saving little on severance pay. As a result, a contract that induces entrenchment

is optimal for the board.

Anti-Entrenchment is optimal when the board's monitoring technology is sufficiently informative. On the one hand, because

the board's monitoring technology is informative, the incumbent manager expects that the turnover rate relies mainly on his

ability rather than the replacement policy. Therefore, a less aggressive replacement policy does not have a significant impact

on motivating period-1 effort. On the other hand, through an aggressive replacement policy the board can (i) avoid the cost of

severance pay when replacement occurs; and (ii) avoid paying the wage to the incumbent manager and undercut the wage in

period 2 to further increase the firm's profit after the incumbent manager exerts his period-1 effort. Thus, anti-entrenchment is

optimal for the board. To the best of our knowledge, we are the first to study the interaction between the board's monitoring

technology and managerial turnover, and to show that anti-entrenchment can be part of the optimal contract.

1.1 Related literature
This paper belongs to the literature on the principal–agent model with replacement.2 One strand of research views entrenchment

as a potential source of inefficiency that the board aims to mitigate. Consequently, anti-entrenchment cannot be observed. Inderst

and Mueller (2010) solve the optimal contract for the incumbent manager who holds private information on the firm's future

performance and can avoid replacement by concealing bad information. Consequently, the optimal contract is designed to induce

the incumbent to voluntarily step down when evidence suggests low expected profit under his management. Similarly, entrench-

ment occurs if the incumbent can make manager-specific investments that create replacement costs for the board (Shleifer &

Vishny, 1989) or if there exist close ties between the board and manager (Hermalin & Weisbach, 1998).

Another strand of research views entrenchment as a feature of the optimal contract (board structure) that helps overcome the

moral hazard problem. Manso (2011) shows that tolerance for early failure (entrenchment) can be part of the optimal incentive

scheme when motivating a manager to pursue more innovative business strategies is important to the board. Casamatta and

Guembel (2010) study the optimal contract for the incumbent manager who is concerned about his reputation. In their model,
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entrenchment is optimal because the incumbent manager would like to see his strategy succeed and thus he is less costly to

motivate than the replacement manager. Almazan and Suarez (2003) use a two-period model to study the optimal board structure

for incentivizing the incumbent manager. In their model, an incumbent manager can exert effort to improve the effectiveness

of his management in period 1, and a potential better replacement may arrive in period 2. The board can choose between the

following two governance structures: a weak board where the incumbent can veto his departure, and a strong board where

the board can fire the incumbent at will. Their model is similar to ours in that severance pay provides credible job security

to the incumbent and can in turn motivate period-1 effort under each governance structure. Thus the board may be entrenched

in equilibrium, that is, the incumbent is retained if the replacement manager is modestly better than him. It is useful to point out

that the model of Almazan and Suarez (2003) rules out the possibility of anti-entrenchment because the replacement manager

is always assumed to perform better than the incumbent even if the incumbent exerts effort in period 1.3 In the same spirit,

Laux (2008) studies the optimal degree of board independence for shareholders and shows that some lack of independence

can increase shareholder value. In these papers, boards (shareholders) provide better job security to the incumbent by making

dismissal more difficult in order to induce more effort. Our paper contributes to the existing literature by pointing out that despite

all the incentive-providing merits of entrenchment, the cost of incentivizing can be high when the board's monitoring technology

is sufficiently informative.

The main economic mechanism of this paper relates to the literature that investigates the tension between ex post optimality

and ex ante incentive within an agency setting. Some papers demonstrate the optimality of entrenchment based on this trade-off

(e.g., Almazan & Suarez, 2003; Burkart, Gromb, & Panunzi, 1997, among others). Other papers show that the ex post optimal

decision may be too soft from an ex ante perspective (e.g., Crémer, 1995, among others), so that implementing the ex ante
optimal policy can be interpreted as generating anti-entrenchment, as in this paper.

The main trade-off between moral hazard and selection at the core of this paper is reminiscent of that in Inderst and Klein

(2007) concerning corporate budgeting. They study a model in which a division manager exerts effort to generate a new project,

and is privately informed about its prospects before the firm invests capital to realize this opportunity. Because the investment

is costly to the firm, the division manager sets a lower standard on project selection than the firm would choose. In other words,

the manager has a tendency to overinvest.4 Similarly, in this paper, after the incumbent manager exerts effort, the board has a

propensity to excessively replace the incumbent due to the promised performance-related pay. Unlike Inderst and Klein (2007),

because the contract in our framework is endogenously designed by the board, both entrenchment and anti-entrenchment can

emerge.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3 characterizes the first best

outcome and defines entrenchment and anti-entrenchment accordingly. Section 4 analyzes the optimal contract in a simplified

model in which the period-2 moral hazard problem is absent, and studies the consequences of informativeness on the equilibrium

replacement policy under the optimal contract. Section 5 investigates the full model and shows that the results we derived in

Section 4 are robust. Section 6 discusses some of our modeling assumptions and presents some extensions of the model. Section 7

summarizes our main findings and concludes. All proofs are presented in the Appendix.

2 THE MODEL

There are two periods 𝑡 = 1, 2 and an initial contract stage (𝑡 = 0).

Contract stage
The board (principal), hires a manager (agent) from a pool with unknown ability 𝜃1 ∈ {0, 1} to work for the firm with common

prior Pr(𝜃1 = 1) = 1
2 .5 The analysis is unchanged for a different prior of 𝜃1. The manager's ability is unknown to both sides. The

board offers a contract to the manager. We describe the contract details below.

Both the board and the managers are risk-neutral. Moreover, we assume that managers are protected by limited liability.6

Finally, we assume the value of the outside option to the manager is 0. This assumption guarantees that the individual rationality

(IR) constraint never binds and simplifies the analysis.

Period 1
The incumbent manager exerts effort 𝑒1 ∈ [0, 1] in the first period. Simultaneously, the board receives a signal 𝑠 ∈  of the

manager's ability and decides whether to replace the incumbent manager. If the incumbent manager is fired, a replacement

manager is hired and has ability 𝜃𝑟 randomly drawn from the same pool of managers. In the rest of the paper, we use variables

with subscript 𝑟 to indicate “replacement manager.”
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F I G U R E 1 Timeline

Period 2
If the incumbent manager is retained, he exerts effort 𝑒2 ∈ [0, 1]. Similarly, if replacement occurs, the board offers a new

contract to the replacement manager and the replacement manager exerts effort 𝑒2𝑟 ∈ [0, 1]. The cost function to the incum-

bent manager is assumed to be 𝐶𝑖(𝑒1, 𝑒2) ∶=
1
2𝑒

2
1 +

1
2𝑒

2
2, and the cost function to the replacement manager is assumed to be

𝐶𝑟(𝑒2𝑟) ∶= 𝐶𝑖(0, 𝑒2𝑟) =
1
2𝑒

2
2𝑟. The quadratic cost function is analytically helpful but not crucial to the qualitative nature of the

main results. The outcome depends on the period-1 effort, the period-2 effort, and the ability of the period-2 manager. Specifi-

cally, we assume the success (𝑦 = 1) probability is equal to

Γ(𝑒1, 𝑒2, 𝜃2) ∶= 𝜃2
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2

]
,7,8 (1)

where 𝑒2 ∈ [0, 1] and 𝜃2 ∈ {0, 1} are the effort and ability of the manager who remains in office in period 2, respectively, and

𝜆 ∈ [0, 1] measures the relative importance of the period-2 effort. Specifically, (𝑒2, 𝜃2) = (𝑒2𝑟, 𝜃𝑟) if the incumbent manager

is replaced and (𝑒2, 𝜃2) = (𝑒2, 𝜃1) otherwise. With probability Γ(𝑒1, 𝑒2, 𝜃2), the project is of high quality and yields outcome

𝑦 = 1. With complementary probability 1 − Γ(𝑒1, 𝑒2, 𝜃2), the project is of low quality and yields outcome 𝑦 = 0. After payoffs

are realized, the incumbent manager and the replacement manager (if replacement occurs) receive payment according to the

contracts signed in period 0 and period 2, respectively, and the game comes to an end. The timeline of the events is summarized

in Figure 1.

It is useful to point out that the complementarity between ability and effort assumed in expression (1) is not crucial for

our main results on entrenchment and anti-entrenchment derived in Propositions 1 and 2. In fact, this assumption allows us

to investigate the interesting interactions between information about the incumbent's ability and his incentive to exert effort

in period 2. If ability and effort are substitutes, then the incumbent manager's period-2 effort will not depend on the signal.

As a result, the learning effect and the sorting effect discussed later in Section 5 will be absent and the main results remain

qualitatively unchanged.

Contract
It is straightforward to see that in the optimal contract, the wage for low output to both the incumbent manager and the potential

replacement manager is equal to 0. Therefore, a contract to the incumbent manager is defined by the tuple (𝑤, 𝑘), where 𝑤 is

the wage rate when 𝑦 = 1 and 𝑘 is the lump-sum severance pay to the incumbent manager if he is fired.9 By the limited liability

assumption,𝑤 ≥ 0 and 𝑘 ≥ 0. Similarly, a contract to the replacement manager is indexed by𝑤𝑟 ≥ 0, where𝑤𝑟 is the wage rate

when 𝑦 = 1.

Information structure
The board receives a noisy signal 𝑠 ∈  regarding the incumbent manager's ability 𝜃1 in the first period, which is drawn from

a distribution with cumulative distribution function (CDF) 𝐹𝜃1 (⋅) and probability density function (PDF) 𝑓𝜃1 (⋅) for 𝜃1 ∈ {0, 1}.

Without loss of generality, we assume  = [0, 1]. The two conditional density functions {𝑓1(𝑠), 𝑓0(𝑠)} suffice to define an

information structure under such normalization. Three assumptions are imposed on the information structure.
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Assumption 1. The monotone likelihood ratio property (MLRP):
𝑓1(𝑠)
𝑓0(𝑠)

is strictly increasing in 𝑠 for 𝑠 ∈ [0, 1].

For binary states, the MLRP assumption is without loss of generality because signals can always be relabeled according to

likelihood ratio to satisfy this assumption.

Assumption 2. Perfectly informative at extreme signals: lim𝑠→0
𝑓1(𝑠)
𝑓0(𝑠)

= 0 and lim𝑠→1
𝑓1(𝑠)
𝑓0(𝑠)

= +∞.

Assumption 2 guarantees that support of the posterior belief is always [0,1]. The last assumption imposed on the information

structure is symmetry. This assumption allows us to define the first best replacement policy on the signal space.

Assumption 3. 𝑓1(𝑠) = 𝑓0(1 − 𝑠) for all 𝑠 ∈ [0, 1].

It follows directly from Assumption 3 that 𝑓1(
1
2 ) = 𝑓0(

1
2 ). Thus, the likelihood ratio at 𝑠 = 1

2 is always 1 and the board's

estimate of the incumbent manager's ability at 𝑠 = 1
2 is equal to the prior.

Finally, we introduce an index 𝛼 ∈ (0,∞) to parameterize the information structure. We assume that 𝑓𝜃1 (𝑠; 𝛼) is continuous

in 𝑠 and 𝛼 for 𝜃1 ∈ {0, 1} and define the information structures for the two extreme values of 𝛼 as follows.

Assumption 4 (Extreme Information Structures).

(i) The information structure becomes completely uninformative as 𝛼 → 0, that is, lim𝛼→0[𝑓0(𝑠; 𝛼) − 𝑓1(𝑠; 𝛼)] = 0 for all 𝑠 ∈
(0, 1).

(ii) The information structure becomes completely informative as 𝛼 → ∞, that is, lim𝛼→∞ 𝑓1(𝑠; 𝛼) = 0 for all 𝑠 ∈ [0, 12 ) and

lim𝛼→∞ 𝑓0(𝑠; 𝛼) = 0 for all 𝑠 ∈ (12 , 1].
10

In words, when the information structure becomes completely uninformative (𝛼 → 0), the two conditional density functions

are the same. When the information structure becomes completely informative (𝛼 → ∞), the board does not observe a signal

below
1
2 if the incumbent manager is of high ability and a signal above

1
2 if the incumbent manager's ability is low.

Two remarks are in order before we proceed to the analysis. First, following Holmström (1999), we assume that the incumbent

manager does not have any private information about his ability when he signs the contract, an assumption which is widely

adopted in the literature (see also Bonatti & Hörner, 2017; Fang & Moscarini, 2005, among others). One way of justifying this

assumption is that the manager's ability in our model is firm-specific and can be interpreted as the match quality between the

board and the manager. Second, to emphasize the effect of signal noncontractibility, we assume in the baseline model that the

signal is learned by both parties but is not contractible by the board at the beginning of the second stage. In Section 6.2, we show

that our results continue to hold when the signal is the board's private information and cannot be observed by the incumbent

manager.

3 THE BENCHMARK CASE: CONTRACTIBLE EFFORT

We first pin down the socially optimal replacement policy, and define entrenchment and anti-entrenchment accordingly. We

define the first-best outcome as the outcome in the absence of the moral hazard problem, but with an information problem. That

is, the board only has the noisy signal 𝑠 on which to base its decision to fire or retain the manager, and how much effort to specify

in period 2. It follows from Assumption 1 that the socially optimal replacement policy is a cutoff rule. Denote 𝑠̂ as the signal

cutoff. The board chooses (𝑒1, 𝑒2(𝑠), 𝑒2𝑟, 𝑠̂) to maximize

max
{𝑒1,𝑒2(𝑠),𝑒2𝑟,𝑠̂}∫

1

𝑠̂

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠)

]
− 1

2
[𝑒2(𝑠)]2

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+ 1
2

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]
×

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2𝑟

2
− 1

2
𝑒22𝑟

]
− 1

2
𝑒21.

Lemma 1 (First-Best Outcome). Suppose that the board can contract on the effort (𝑒1, 𝑒2(𝑠)) of the incumbent manager and
𝑒2𝑟 of the replacement manager. Then, the optimal period-1 effort is 𝑒

1 = 1
2 (1 − 𝜆){1 +

1
2 [𝐹0(𝑠̂

) − 𝐹1(𝑠̂)]}. In period 2,
the incumbent is retained and exerts effort 𝑒

2 (𝑠) = 𝑓1(𝑠)
𝑓1(𝑠)+𝑓0(𝑠)

𝜆 if 𝑠 > 𝑠̂. Otherwise, the board hires the replacement and

enforces 𝑒
2𝑟 = 1

2𝜆. Moreover, the optimal replacement cutoff is 𝑠̂ = 1
2 .
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When effort is contractible, the board is able to optimize effort and ability selection separately. Thus, there is no trade-off

between the moral hazard problem and the ability selection problem. It is optimal to replace the incumbent manager when the

posterior belief about the incumbent's ability falls below the expected value of the pool, otherwise it is optimal to retain the

incumbent. By Assumption 3, the likelihood ratio
𝑓1(𝑠)
𝑓0(𝑠)

at the neutral signal 𝑠 = 1
2 is always equal to 1, which in turn implies

that the Bayesian update of the incumbent manager's ability is always equal to the prior independent of the informativeness 𝛼 of

the information structure. Consequently, the socially optimal cutoff 𝑠̂ = 1
2 .

Denote (𝑤∗, 𝑘∗) and𝑤∗
𝑟 as the period-1 and period-2 optimal contracts to the board, respectively. Let (𝑠̂∗, 𝑒∗1, 𝑒

∗
2(𝑠), 𝑒

∗
2𝑟) be the

equilibrium replacement cutoff and effort in the continuation game induced by the optimal contract. Given the first-best cutoff

derived in Lemma 1, we can now define entrenchment and anti-entrenchment as follows:

Definition 1. We define “entrenchment” as a cutoff 𝑠̂∗ < 1
2 and “anti-entrenchment” as 𝑠̂∗ > 1

2 .

For the case where 𝑠̂∗ = 1
2 , we say that neither entrenchment nor anti-entrenchment is observed. In this case, the replacement

policy coincides with the socially optimal policy. When 𝑠̂∗ < 1
2 , the replacement policy favors the incumbent manager: the board

could have improved the expected ability of the period-2 manager by replacing the incumbent. Similarly, the replacement policy

is considered aggressive and places the incumbent manager at a disadvantage when 𝑠̂∗ > 1
2 .

4 OPTIMAL CONTRACT AND REPLACEMENT POLICY: 𝝀 = 𝟎

In this section, we solve the equilibrium outcome when effort is noncontractible. That is, the board can only commit to the

wage 𝑤 and severance pay 𝑘 in the contract. To explain the intuition most cleanly, let us first consider the case where 𝜆 = 0. In

Section 5, we allow 𝜆 to be positive and again show that the main results derived in this section continue to hold.

When 𝜆 = 0, the success probability in expression (1) degenerates to 𝜃2𝑒1 and does not depend on the period-2 effort 𝑒2.

Therefore, the board will not offer a contract to the replacement manager, or equivalently, 𝑤∗
𝑟 = 0 in the optimal contract. Next,

we solve the game by backward induction. We are interested in the cutoff 𝑠̂∗ induced by the optimal contract.

Incentives under fixed contract (𝒘,𝒌)
A contract (𝑤, 𝑘) induces a sub-game in which the manager chooses effort and the board chooses the replacement cutoff simul-

taneously. The incumbent manager's effort 𝑒1 and the board's replacement policy 𝑠̂ will be determined in a Cournot–Nash

equilibrium.

For contract (𝑤, 𝑘), the incumbent manager's best response to cutoff 𝑠̂ is effort 𝑒1 that maximizes

max
𝑒1

1
2

[
1 − 𝐹1(𝑠̂)

]
𝑒1𝑤 + 1

2
[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]
𝑘 − 1

2
𝑒21.

With probability
1
2 [1 − 𝐹1(𝑠̂)], the incumbent manager is of high ability (𝜃1 = 1) and is retained; and his expected payoff from

exerting effort 𝑒1 is 𝜃2𝑒1𝑤 = 𝑒1𝑤.11 With probability
1
2 [𝐹1(𝑠̂) + 𝐹0(𝑠̂)], the incumbent is replaced and receives a lump-sum

severance pay of 𝑘. The first-order condition for the above maximization problem with respect to 𝑒1 yields

𝑒1(𝑠̂;𝑤, 𝑘) =
1
2

[
1 − 𝐹1(𝑠̂)

]
𝑤.12 (2)

From equation (2), the board can provide incentive to exert effort by increasing wage 𝑤 directly or by designing a contract that

indirectly induces a lower equilibrium cutoff 𝑠̂.

Similarly, for a fixed contract (𝑤, 𝑘), the board's best response to the incumbent manager's effort level 𝑒1 is to choose a cutoff

𝑠̂ to maximize the expected profit

max
𝑠̂

1
2

[
1 − 𝐹1(𝑠̂)

]
𝑒1(1 −𝑤) +

1
2

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

] (1
2
𝑒1 − 𝑘

)
.

With probability
1
2 [1 − 𝐹1(𝑠̂)], the incumbent manager is of high ability (𝜃1 = 1) and is retained, and the board pays 𝑤 when

𝑦 = 1. Therefore, the corresponding expected profit is 𝜃2𝑒1(1 −𝑤) = 𝑒1(1 −𝑤). With probability
1
2 [𝐹1(𝑠̂) + 𝐹0(𝑠̂)], a replace-

ment manager with expected ability 𝔼(𝜃𝑟) =
1
2 is in office. In this case, the board's expected profit is the difference between the
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expected outcome, which is 𝔼(𝜃𝑟)𝑒1 =
1
2𝑒1, and the severance pay 𝑘. The board's replacement cutoff, denoted by 𝑠̂(𝑒1;𝑤, 𝑘), can

be derived from the following indifference condition:13

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

𝑒1(1 −𝑤) =
1
2
𝑒1 − 𝑘. (3)

The left-hand side of equation (3) is the expected profit when the board retains the incumbent manager after observing signal 𝑠̂;

and the right-hand side is the board's expected profit upon replacement. Because a higher cutoff implies higher posterior belief

about the incumbent manager's ability, the board chooses a cutoff such that the expected profit created by the marginal incumbent

manager is equal to the expected profit when replacement occurs in equilibrium.

To better understand the board's period-2 equilibrium replacement decision and its period-1 incentive in designing the contract

(𝑤, 𝑘), it is useful to rewrite equation (3) as follows:

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

𝑒1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Expected revenue of retaining

the incumbent manager

− 1
2
𝑒1

⏟⏟⏟
Expected revenue of replacing

the incumbent manager

=
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
𝑒1𝑤

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Expected cost of retaining

the incumbent manager

− 𝑘
⏟⏟⏟

Expected cost of replacing
the incumbent manager

.

Note that although the replacement manager receives no payment in the case where 𝜆 = 0, replacing the incumbent manager

incurs a cost of 𝑘 to the board. Now suppose that the board receives a neutral signal 𝑠 = 1
2 and thus

𝑓1(𝑠)
𝑓1(𝑠)+𝑓2(𝑠)

= 1
2 . Then the

incumbent manager and the potential replacement manager are of the same expected ability and generate the same expected

revenue (i.e.,
𝑓1(𝑠)

𝑓1(𝑠)+𝑓0(𝑠)
𝑒1 =

1
2𝑒1) to the board. Under such a scenario, whether entrenchment or anti-entrenchment emerges

in equilibrium depends solely on the comparison of the expected costs from the above condition. Specifically, if
1
2𝑒1𝑤 > 𝑘,

then replacing the incumbent manager with a neutral signal is optimal because the board can (i) avoid paying the wage 𝑤 by

the end of period 2 through replacement; and (ii) instead pay the incumbent manager a low severance pay 𝑘 (and pay nothing

to the replacement in the case where 𝜆 = 014). As a result, anti-entrenchment arises in equilibrium.15 Similarly, retaining the

incumbent manager is preferred by the board if
1
2𝑒1𝑤 < 𝑘 and entrenchment arises. Note that both 𝑤 and 𝑘 are endogenous

variables and are specified by the board in its period-1 contract to the incumbent manager, and hence whether entrenchment or

anti-entrenchment arises in equilibrium under the optimal contract is nontrivial.

Given contract (𝑤, 𝑘), the equilibrium cutoff and effort (𝑠̂(𝑤, 𝑘), 𝑒1(𝑤, 𝑘)) are pinned down by equations (2) and (3). Alterna-

tively, we can calculate the corresponding contract (𝑤, 𝑘) that induces any tuple (𝑠̂, 𝑒1) as follows:

𝑤(𝑠̂, 𝑒1) =
𝑒1

1
2

[
1 − 𝐹1(𝑠̂)

] , (4)

and

𝑘(𝑠̂, 𝑒1) =
1
2
𝑒1 −

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

𝑒1
[
1 −𝑤(𝑠̂, 𝑒1)

]
. (5)

It follows immediately from equation (4) that the limited liability constraint for 𝑤 is satisfied. However, the limited liability

constraint for 𝑘 is not always satisfied for all (𝑠̂, 𝑒1) ∈ [0, 1] × [0, 1] from equation (5). Next, we proceed by solving for a relaxed

problem where the limited liability constraint on 𝑘 is dropped. It can be verified later that 𝑘 ≥ 0 is satisfied (see Lemma 2) at

the optimal contract in the relaxed problem, implying that the optimal contract in the relaxed problem also solves the original

problem where the limited liability constraint is imposed.

Analysis of the first stage game
The board chooses contract (𝑤, 𝑘) to maximize expected profit as follows:

max
{𝑤,𝑘}

1
2
[1 − 𝐹1(𝑠̂)]𝑒1(1 −𝑤) +

1
2

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

] (1
2
𝑒1 − 𝑘

)
s.t.

𝑒1 =
1
2

[
1 − 𝐹1(𝑠̂)

]
𝑤,
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and

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

𝑒1(1 −𝑤) =
1
2
𝑒1 − 𝑘.

Equivalently, the board is maximizing expected profit over the equilibrium variables (𝑠̂, 𝑒1), with 𝑤(𝑠̂, 𝑒1) and 𝑘(𝑠̂, 𝑒1) as

determined in equations (4) and (5). Substituting equations (4) and (5) into the board's profit function yields the expected profit

as a function of (𝑠̂, 𝑒1)

𝑒1

⎡⎢⎢⎣1 −
𝑒1

1
2

[
1 − 𝐹1(𝑠̂)

]⎤⎥⎥⎦
{

1
2

[
1 − 𝐹1(𝑠̂)

]
+ 1

2
[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

] 𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

}
.

It can be verified that 𝑒1 =
1
4 [1 − 𝐹1(𝑠̂)] under the optimal contract. Consequently, 𝑤∗ = 1

2 . The following lemma summarizes

the above discussions.

Lemma 2. Fixing a replacement cutoff 𝑠̂ that it would like to induce, the board maximizes expected profit by offering a contract
𝑤 = 1

2 and 𝑘(𝑠̂) = 1
4 [1 − 𝐹1(𝑠̂)][

1
2 −

1
2

𝑓1(𝑠̂)
𝑓1(𝑠̂)+𝑓0(𝑠̂)

] ≥ 0. Moreover, in equilibrium, the incumbent manager chooses effort 𝑒1(𝑠̂) =
1
4 [1 − 𝐹1(𝑠̂)].

Note that 𝑘(𝑠̂) is strictly decreasing in the equilibrium cutoff 𝑠̂ from Lemma 2. Therefore, by committing to a higher severance

pay, the board chooses a lower replacement cutoff in equilibrium and hence is able to induce greater effort [see equation (2)].

Exploiting the results in Lemma 2, the expected profit can be rewritten in terms of 𝑠̂ alone:

𝜋(𝑠̂) ∶= 1
8

[
1 − 𝐹1(𝑠̂)

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟
incentive effect

×

⎧⎪⎪⎨⎪⎪⎩
[1
2
[1 − 𝐹1(𝑠̂)] +

1
4
[𝐹1(𝑠̂) + 𝐹0(𝑠̂)]

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

selection effect

+ 1
2
[𝐹1(𝑠̂) + 𝐹0(𝑠̂)]

(
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
− 1

2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

commitment cost effect

⎫⎪⎪⎬⎪⎪⎭
.

It is clear that the optimal cutoff relies on the informativeness of the information structure. From the above expression, three

effects play a role in determining the optimal cutoff. Because the outcome depends on the expected ability of the manager

in period 2, the board faces an ability selection problem. This is captured by the term [ 12 [1 − 𝐹1(𝑠̂)] +
1
4 [𝐹1(𝑠̂) + 𝐹0(𝑠̂)]],

which is called the selection effect. In fact, this term is exactly the expected ability of the manager that remains in office in

period 2.16 To maximize this term, the board would replace the incumbent if the posterior belief of his ability falls below the

prior, or equivalently, if the signal is below
1
2 , and would retain the incumbent otherwise. Therefore, to independently optimize

ability selection, the board would select a contract to induce 𝑠̂ = 1
2 .

Because the outcome also depends on the effort choice of the incumbent manager, the board faces a moral hazard problem and

needs to incentivize the incumbent. This is captured by the term [1 − 𝐹1(𝑠̂)], which is referred to as the incentive effect. As the

equilibrium replacement cutoff 𝑠̂ increases, the incumbent manager expects a lower probability of retention in equilibrium and

exerts less effort accordingly [see equation (2)]. In response, the board provides greater job security in order to better incentivize

the incumbent manager. By this effect alone, the board induces 𝑠̂ = 0.

If the selection effect and the incentive effect were the only effects, a cutoff below
1
2 would be optimal to the board and

entrenchment would emerge under the optimal contract. However, because the signal is noncontractible, the board lacks com-

mitment power on the replacement policy. Severance pay serves as a costly commitment device that helps make replacement of

the incumbent less likely. As the severance pay increases, it lowers the expected payoff of replacement, which creates a stronger

incentive for the board to retain the incumbent. In equilibrium, the expected profit of replacement is equal to the expected profit

created by the marginal incumbent manager. When the board lowers the cutoff (𝑠̂ <
1
2 ) to provide greater incentive on effort, it has

to increase severance pay to make the equilibrium replacement policy credible. This generates a net loss compared to the first-best

replacement policy due to the increment of the severance pay. It is captured by the term
1
2 [𝐹1(𝑠̂) + 𝐹0(𝑠̂)](

𝑓1(𝑠̂)
𝑓1(𝑠̂)+𝑓0(𝑠̂)

− 1
2 ), which
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is referred to as the commitment cost effect. Compared to the first best cutoff 𝑠̂ = 1
2 , the board saves severance pay by providing

less commitment and designing a contract that induces a cutoff above
1
2 . By the same token, the board bears a greater severance

pay cost by committing to a cutoff that is below
1
2 . The net commitment cost effect is shown by the term ( 𝑓1(𝑠̂)

𝑓1(𝑠̂)+𝑓0(𝑠̂)
− 1

2 ). Mul-

tiplied by the probability of replacement, this yields the total net commitment gain/loss. By this effect alone, the board induces

𝑠̂ = 1.

To summarize, whether entrenchment or anti-entrenchment is optimal to the board depends on the strength of the incentive

effect and the commitment cost effect. If the incentive effect dominates the commitment cost effect, entrenchment is optimal.

Otherwise, anti-entrenchment is optimal. The next proposition illustrates how the optimal replacement policy varies depending

on the informativeness of the board's monitoring technology.

Proposition 1. Suppose that {𝑓1(⋅; 𝛼), 𝑓0(⋅; 𝛼)} satisfies Assumptions 1–4. Then there exist two thresholds 𝛼 and 𝛼 such that:
(i) 𝑠̂∗(𝛼) > 1

2 for 𝛼 > 𝛼; (ii) 𝑠̂∗(𝛼) < 1
2 for 𝛼 < 𝛼.17

When the information structure is noisy, providing incentive is more profitable than avoiding the severance pay through

providing less commitment on the equilibrium replacement policy, and thus entrenchment arises under the optimal contract.

To see this more clearly, suppose that the board offers the incumbent manager a contract that induces an equilibrium cutoff

signal at
1
2 , and is considering increasing the cutoff signal locally by a small amount 𝜖 > 0. By the incentive effect, increasing

the equilibrium cutoff signal to 𝑠̂ = 1
2 + 𝜖 reduces the incumbent manager's incentive to exert period-1 effort from (2) and

the board's profit decreases. On the other hand, increasing the equilibrium cutoff helps the board avoid the severance pay and

leads to an increase in profits by the commitment cost effect. Recall that the amount of savings on the severance pay (i.e., the

strength of the commitment cost effect) depends on the size of ( 𝑓1(𝑠̂)
𝑓1(𝑠̂)+𝑓0(𝑠̂)

− 1
2 ), which in turn depends on the informativeness

of the information structure. For a noisy information structure (i.e., 𝛼 → 0), the expected ability of the incumbent manager at

the cutoff signal 𝑠̂ = 1
2 + 𝜖 is very close to that at

1
2 , implying that the amount of severance pay that can be saved by locally

increasing the equilibrium cutoff is negligible. Therefore, the incentive effect dominates the commitment cost effect and thus it

is optimal for the board to design a contract that leads to entrenchment in equilibrium.

When the board's monitoring technology becomes sufficiently informative, the commitment cost effect takes over and inducing

an equilibrium cutoff signal below
1
2 is not optimal for the board. Similar to the analysis for the case where 𝛼 → 0, suppose that

the board is offering a contract to the incumbent manager that induces an equilibrium cutoff signal at
1
2 , and is considering

decreasing the cutoff signal locally by a small amount 𝜖 > 0. Because the probability of firing a high-ability manager is very

small for all signals below
1
2 from Assumption 4, reducing the equilibrium replacement cutoff to less than

1
2 has little effect on the

incumbent's period-1 effort. Furthermore, decreasing the equilibrium cutoff signal requires the board to increase the severance

pay significantly. To see this, note that the expected ability of the manager in the left neighborhood of
1
2 is very close to 0 as

𝛼 → 0. In other words, the board is very certain that the incumbent manager is of low ability when it receives a signal slightly

below
1
2 . In order for the board to be indifferent between replacing and retaining the incumbent upon receiving that signal, a

significantly higher severance pay has to be promised relative to the case where the board would like to induce an equilibrium

cutoff signal equal to
1
2 . Therefore, the board has no incentive to design a contract to reduce the equilibrium cutoff below

1
2 , and

anti-entrenchment is expected under the optimal contract.

It is useful to point out that Assumption 4 defines informativeness when 𝛼 becomes sufficiently large or small, and hence

Proposition 1 is a limiting result. In Online Appendix A, we introduce an information order that we refer to as the 𝜌-concave order

and we characterize the equilibrium replacement policy for all 𝛼.18 We show that if the information structures can be ranked

by the 𝜌-concave order, then there exists a threshold of 𝛼 above (respectively, below) which anti-entrenchment (respectively,

entrenchment) emerges in equilibrium under the optimal contract. Next, we provide an example to illustrate this point.

Example 1 (A Family of Information Structures Ranked by 𝜌-Concavity Order). Suppose that 𝜆 = 0 and the board's signal,

𝑠, is drawn from one of the two densities on [0,1]:

𝑓1(𝑠; 𝛼) =

{
(2𝑠)𝛼 for 𝑠 ∈ [0, 12 ]
2 − [2(1 − 𝑠)]𝛼 for 𝑠 ∈ (12 , 1],

and

𝑓0(𝑠; 𝛼) =

{
2 − (2𝑠)𝛼 for 𝑠 ∈ [0, 12 ]
[2(1 − 𝑠)]𝛼 for 𝑠 ∈ (12 , 1].
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F I G U R E 2 Equilibrium turnover and severance pay under optimal contract

It can be verified that Assumptions 1–4 are satisfied. Moreover, the equilibrium replacement policy 𝑠̂∗(𝛼) is characterized as

follows:

(i) if 𝛼 ≤ 1, then 𝑠̂∗(𝛼) = 0;

(ii) if 1 < 𝛼 <
√
5+1
2 , then 𝑠̂∗(𝛼) ∈ (0, 12 );

(iii) if 𝛼 >

√
5+1
2 , then 𝑠̂∗(𝛼) ∈ ( 12 , 1).

Note that fixing 𝛼 and the equilibrium replacement policy 𝑠̂∗(𝛼), the corresponding equilibrium turnover is
1
2 [𝐹1(𝑠̂

∗(𝛼); 𝛼) +
𝐹0(𝑠̂∗(𝛼); 𝛼)]. Exploiting the functional form of {𝑓1(⋅; 𝛼), 𝑓0(⋅; 𝛼)} in Example 1, it is straightforward to verify that the equi-

librium turnover is equal to the equilibrium cutoff signal 𝑠̂∗(𝛼). Figure 2(a) depicts the equilibrium turnover for different infor-

mativeness levels of the monitoring technology. It is clear that turnover is increasing for 𝛼 ∈ [1,
√
5+1
2 ] when the manager is

entrenched. The relationship between turnover and the informativeness of the board's monitoring technology is an inverted-

U shape for 𝛼 >

√
5+1
2 . As 𝛼 approaches infinity, the optimal cutoff converges to

1
2 . Figure 2(b) shows that severance pay in

the optimal contract is decreasing in the informativeness of the board's monitoring technology. This result is intuitive: when

the information structure becomes more informative, it is easier for the board to obtain the net commitment gain. Therefore, the

board is less willing to commit to retaining the incumbent manager, and has incentive to reduce the amount of severance pay

specified in the optimal contract.

5 OPTIMAL CONTRACT AND REPLACEMENT POLICY: 𝝀 > 𝟎

In this section, we allow 𝜆 to be positive. When 𝜆 > 0, the board needs to offer a new contract to the replacement manager

if the incumbent manager is fired. As will be shown later, due to the fact that the incumbent manager needs to exert effort in

period 2 in the event that he is retained, two new effects emerge and need to be taken into consideration when the board designs

the contract. Again we can show that the main result derived in Proposition 1 continues to hold.

5.1 Characterizing the optimal contract
Optimal contract with the replacement manager
We first calculate the optimal contract with the replacement manager 𝑤𝑟 after the incumbent's departure for a given belief of

period-1 effort 𝑒1. It is useful to point out that (i) the replacement manager's effort decision 𝑒2𝑟 is independent of the signal

because the success function is independent of 𝜃1 after replacement; (ii) 𝑒2𝑟 is independent of period-1 effort 𝑒1 because efforts

in the two periods are separable. Fixing 𝑤𝑟, the replacement manager chooses 𝑒2𝑟 to maximize

max
𝑒2𝑟

1
2

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2𝑟

]
𝑤𝑟 −

1
2
𝑒22𝑟 ⇒ 𝑒2𝑟(𝑤𝑟) =

1
2
𝜆𝑤𝑟. (6)
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Therefore, the board chooses 𝑤𝑟 to maximize

max
𝑤𝑟

1
2

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2𝑟(𝑤𝑟)

]
(1 −𝑤𝑟) ⇒ 𝑤𝑟(𝑒1) = max

{
1
2
− 1 − 𝜆
𝜆2
𝑒1, 0

}
.

Note that the optimal wage to the replacement manager is decreasing in the board's belief about 𝑒1. When the period-1 effort 𝑒1
is sufficiently large or 𝜆 is sufficiently small, the board provides a contract with 𝑤𝑟 = 0 to the replacement manager. Let 𝜋(𝑒1)
denote the board's expected profit excluding the severance pay with contract 𝑤𝑟(𝑒1) after replacement. Simple algebra yields

𝜋(𝑒1) =
⎧⎪⎨⎪⎩

1
4

(
1
2𝜆 +

1−𝜆
𝜆
𝑒1

)2
for 𝑒1 ≤ 1

2
𝜆2

1−𝜆
1
2 (1 − 𝜆)𝑒1 for 𝑒1 >

1
2
𝜆2

1−𝜆 .
(7)

Incentives under fixed contract (𝒘,𝒌)
A contract (𝑤, 𝑘) induces a subgame in which the incumbent manager chooses period-1 effort, and period-2 effort 𝑒2(𝑠) after

observing signal 𝑠 if he is retained, and the board chooses the replacement cutoff. Fixing a contract (𝑤, 𝑘) and belief of 𝑠̂, the

incumbent manager chooses effort 𝑒1 and 𝑒2(𝑠) to maximize

∫
1

𝑠̂

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠)

]
𝑤 − 1

2
[𝑒2(𝑠)]2

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
+
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

2
𝑘 − 1

2
𝑒21.

The first-order conditions for the above maximization problem with respect to 𝑒1 and 𝑒2(𝑠) yield

𝑒1(𝑠̂;𝑤, 𝑘) =
1 − 𝐹1(𝑠̂)

2
(1 − 𝜆)𝑤, (8)

and

𝑒2(𝑠, 𝑠̂;𝑤, 𝑘) =
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
𝜆𝑤, if 𝑠 ≥ 𝑠̂. (9)

As in the case where 𝜆 = 0, the board can motivate the period-1 effort by increasing wage𝑤 directly or by designing a contract to

lower the equilibrium cutoff 𝑠̂ indirectly from equation (8). Next we consider the period-2 effort. First, notice that upon observing

the signal, the marginal manager with the cutoff signal 𝑠̂ updates the belief about his ability from
1
2 to

𝑓1(𝑠̂)
𝑓1(𝑠̂)+𝑓0(𝑠̂)

and exerts effort

accordingly. This is referred to as the learning effect [see also equation (17)]. Second, because the signal is observable to the

incumbent manager, he can condition his period-2 effort on the signal 𝑠. Moreover, the complementarity between effort and

ability implies that 𝑒2(𝑠, 𝑠̂;𝑤, 𝑘) is increasing in 𝑠 [see equation (9)].19 The additional amount of expected outcome motivated

is

∫
1

𝑠̂

{[
𝑒2(𝑠, 𝑠̂;𝑤, 𝑘) − 𝑒2(𝑠̂, 𝑠̂;𝑤, 𝑘)

]
×

𝑓1(𝑠)
𝑓1(𝑠) + 𝑓0(𝑠)

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

= 𝜆𝑤∫
1

𝑠̂

[(
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
−

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

)
×

𝑓1(𝑠)
𝑓1(𝑠) + 𝑓0(𝑠)

]
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
, (10)

which is referred to as the sorting effect [see also equation (17)]. In Section 5.2, we will discuss in detail how the magnitudes of

these two new effects vary with the informativeness of the board's information structure.

For a fixed contract (𝑤, 𝑘) and belief about the effort profile (𝑒1, 𝑒2(𝑠)), the board chooses cutoff 𝑠̂ to maximize

∫
1

𝑠̂

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠)

]
(1 −𝑤)

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
+
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

2
[
𝜋(𝑒1) − 𝑘

]
, (11)

⇒ 𝑠̂(𝑒1, 𝑒2(𝑠);𝑤, 𝑘) solves
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠̂)

]
(1 −𝑤) = 𝜋(𝑒1) − 𝑘. (12)
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As in the case where 𝜆 = 0, the board chooses a cutoff such that the expected profit created by the marginal incumbent manager

is equal to the expected profit under replacement.

Given contract (𝑤, 𝑘), the equilibrium cutoff and effort profile are pinned down by equations (8), (9), and (12).20 Alternatively,

we can calculate the corresponding severance pay 𝑘 and effort decision (𝑒1, 𝑒2(𝑠)) given the wage rate and board's desired

equilibrium cutoff as follows:

𝑒1(𝑠̂, 𝑤) =
1 − 𝐹1(𝑠̂)

2
(1 − 𝜆)𝑤, (13)

𝑒2(𝑠, 𝑠̂, 𝑤) =
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
𝜆𝑤 if 𝑠 ≥ 𝑠̂, (14)

and

𝑘(𝑠̂, 𝑤) = 𝜋(𝑒1(𝑠̂, 𝑤)) −
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
[
(1 − 𝜆)𝑒1(𝑠̂, 𝑤) + 𝜆𝑒2(𝑠̂, 𝑠̂, 𝑤)

]
(1 −𝑤). (15)

Analysis of the first-stage game
The board maximizes expected profit over (𝑠̂, 𝑤), with 𝑒1(𝑠̂, 𝑤), 𝑒2(𝑠, 𝑠̂, 𝑤), and 𝑘(𝑠̂, 𝑤) as determined in equations (13), (14),

and (15), respectively. Substituting equations (13), (14), and (15) into the board's profit function (11) yields expected profit as a

function of (𝑠̂, 𝑤).

𝜋(𝑠̂, 𝑤) ∶=𝑤(1 −𝑤) ×

{
(1 − 𝜆)2

(
1 − 𝐹1(𝑠̂)

2

)2
+ 𝜆2 ∫

1

𝑠̂

(
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)

)2
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

2
×

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

×
[
(1 − 𝜆)2

1 − 𝐹1(𝑠̂)
2

+ 𝜆2
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)

]}
. (16)

Therefore, the board's problem reduces to maximization of 𝜋(𝑠̂, 𝑤) subject to the limit liability constraint 𝑘(𝑠̂, 𝑤) ≥ 0.

5.2 Equilibrium replacement policy under optimal contract
Next we investigate the equilibrium replacement policy under the optimal contract. For the ease of our exposition, we proceed by

ignoring the nonnegativity constraint for severance pay.21 It is straightforward to verify that𝑤∗ = 1
2 under the optimal contract.

Therefore, the expected profit can be rewritten in terms of 𝑠̂ alone, and can be usefully decomposed into five components as

follows:

𝜋
(
𝑠̂,
1
2

)
= 1

4
×

⎧⎪⎪⎨⎪⎪⎩
(1 − 𝜆)2

1 − 𝐹1(𝑠̂)
2

⏟⏞⏞⏟⏞⏞⏟
incentive effect

+ 𝜆2
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

learning effect

⎫⎪⎪⎬⎪⎪⎭
×

⎧⎪⎪⎨⎪⎪⎩
[1
2

[
1 − 𝐹1(𝑠̂)

]
+ 1

4
[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

selection effect

+ 1
2

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

] (
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
− 1

2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

commitment cost effect

⎫⎪⎪⎬⎪⎪⎭
+ 𝜆2 ∫

1

𝑠̂

[(
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
−

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

)
×

𝑓1(𝑠)
𝑓1(𝑠) + 𝑓0(𝑠)

]
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

sorting effect

.

(17)

As we mentioned, the learning effect and the sorting effect enter the expression of the board's profit function if the probability

of success depends on period-2 effort (i.e., 𝜆 > 0). The next proposition reports results that are parallel to those in Proposition 1.
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Proposition 2. Suppose that {𝑓1(⋅; 𝛼), 𝑓0(⋅; 𝛼)} satisfies Assumptions 1–4. Then,

(i) anti-entrenchment emerges in the optimal contract if 𝛼 is sufficiently large for all 𝜆 ∈ (0, 0.2231];22

(ii) entrenchment emerges in the optimal contract if 𝛼 is sufficiently small for all 𝜆 ∈ (0, 1].

The intuition for entrenchment to emerge under the optimal contract as 𝛼 → 0 is as follows. Recall that when the information

structure becomes sufficiently uninformative, the estimate of the incumbent manager's ability at any signal 𝑠 ∈ (0, 1) is very

close to the prior. As a result, the learning effect is the same for all signals, and the sorting effect vanishes because receiving

a signal above the cutoff signal 𝑠̂ reveals little additional information about the incumbent's ability. In this case, the two new

effects are not decisive in determining the equilibrium cutoff in the optimal contract; and entrenchment emerges as predicted in

Proposition 1 as 𝛼 → 0.

The intuition is less straightforward when the information structure becomes sufficiently informative. In fact, optimizing the

learning effect leads to an equilibrium cutoff greater than
1
2 while optimizing the sorting effect leads to an equilibrium cutoff

below
1
2 . To see this, let us first consider a contract that induces the first-best cutoff

1
2 . In equilibrium, the incumbent manager's

posterior belief about his ability when he observes the cutoff signal is equal to the prior. An alternative contract that induces an

equilibrium cutoff signal slightly above
1
2 allows the incumbent manager on the margin to be almost sure that he is of high ability

and he will double his period-2 effort from
1
2𝜆𝑤 to 𝜆𝑤 [see equation (14)]. Therefore, by the learning effect alone, the board

has incentive to induce anti-entrenchment. On the other hand, because the manager is very certain about his type for 𝑠 ≠ 1
2 , a

signal that is strictly above the first-best cutoff conveys little additional information about his ability. Therefore, although the

incumbent manager can condition his period-2 effort on the signal, the corresponding effort level does not vary as much and

the sorting effect vanishes by inducing anti-entrenchment. When the period-1 effort is more important than the period-2 effort

in determining the outcome, that is, when 𝜆 is small (i.e., 𝜆 < 0.2231), both the learning effect and the sorting effect become

less important than the other three effects in expression (17) when the board designs the contract. Therefore, anti-entrenchment

emerges when the information structure becomes completely informative as in Proposition 1.

5.3 Numerical illustration
Propositions 1 and 2 give no indication whether entrenchment or anti-entrenchment is optimal for moderate values of 𝛼 and

𝜆 ∈ [0.2231, 1). In particular, the optimal period-2 effort implemented is zero if the incumbent manager is replaced for the case

where 𝜆 = 0, which in turn implies the optimality of zero wage to the replacement manager. Therefore, one may conclude that

anti-entrenchment relies on the assumption that the period-2 effort is less crucial than the period-1 effort in determining the

firm's success (i.e., 𝜆 < 0.2231), or is due to the fact that the optimal period-2 wage to the replacement manager is (almost) zero.

In fact, what really allows anti-entrenchment to arise is the board's incentive to reset the wage (not necessarily down to zero);

it is also possible for anti-entrenchment to emerge under the optimal contract when the replacement manager's effort and wage

are both positive. Next, we parameterize the information structure as described in Example 1 and provide a numerical example

to elaborate on this point.

Example 2. Let 𝜆 = 1
2 , that is, the effort levels exerted in both periods are equally important to the firm's success. Next, we

set 𝛼 = 1, implying that 𝑓1(𝑠) = 2𝑠 and 𝑓2(𝑠) = 2(1 − 𝑠) for all 𝑠 ∈ [0, 1]. The optimal contract to the incumbent manager is

(𝑤∗, 𝑘∗) ≃ (0.5314, 0), and the wage to the replacement manager is 𝑤∗
𝑟 ≃ 0.3104 > 0. The resulting equilibrium replacement

cutoff signal is 𝑠̂∗ ≃ 0.5352 and thus anti-entrenchment arises in equilibrium.

Regarding the equilibrium variables, it follows from equations (8) and (9) that the incumbent manager's equilibrium period-1

effort is 𝑒∗1 = 1−(𝑠̂∗)2
2 (1 − 𝜆)𝑤 ≃ 0.0948 and the equilibrium period-2 effort is 𝑒∗2(𝑠) = 𝜆𝑤

∗𝑠 ≃ 0.2657𝑠 for 𝑠 ≥ 𝑠̂. Similarly, the

replacement manager's equilibrium effort level is 𝑒𝑟∗2 = 1
2𝜆𝑤

∗
𝑟 ≃ 0.0776 from equation (6), which is nonzero and is close to 𝑒∗1

when 𝜆 = 1
2 .

Figure 3 illustrates the equilibrium replacement policy under the optimal contract in the (𝛼, 𝜆) space.23 The region between

the two dotted curves in Figure 3 depicts the combination of (𝛼, 𝜆) for which anti-entrenchment emerges. The region of (𝛼, 𝜆) to

the left of the lower dotted curve depicts the combination of (𝛼, 𝜆) for which entrenchment emerges under the optimal contract.

Similarly, the region of (𝛼, 𝜆) to the right of the upper dotted curve depicts the combination of (𝛼, 𝜆) for which the equilibrium

replacement cutoff coincides with the first-best replacement cutoff (𝑠̂∗ = 1
2 ).

The first pattern to notice is that fixing 𝜆, anti-entrenchment (respectively, entrenchment) emerges when information structure

is sufficiently informative (respectively, uninformative). This confirms the result in Proposition 2. The second pattern to notice
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is that neither entrenchment nor anti-entrenchment is observed when 𝜆 is sufficiently large. The intuition is as follows. Consider

the extreme case where 𝜆→ 1, in which the success probability reduces to 𝜃2𝑒2 and the period-1 effort has almost no impact

in determining the outcome. Therefore, the board faces no trade-off between increasing period-1 effort and optimizing ability

selection, and will accordingly design a contract to induce the equilibrium signal cutoff that is equal to
1
2 .

6 DISCUSSIONS AND EXTENSIONS

6.1 The role of key modeling assumptions
Thus far, we have assumed that: (i) severance pay can be used in the design of the optimal contract; (ii) severance pay is constant

with respect to outcome, that is, the board cannot provide performance-based severance pay; (iii) the signal is noncontractible.

In this section, we briefly discuss the role of each assumption in shaping the equilibrium cutoff under the optimal contract.

The role of severance pay
Suppose that severance pay is ruled out in the design of the optimal contract, or equivalently, that the board is constrained to

use 𝑘 = 0. Then we can show that anti-entrenchment always arises in equilibrium. To see this, first notice that by the standard

argument as in the previous pages, it can be shown that 𝑤∗ = 1
2 in the optimal contract. Second, fixing 𝑒1 > 0, the board's

indifference condition can be easily obtained by letting 𝑘 = 0 in equation (12):

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠̂)

]
(1 −𝑤∗) = 𝜋(𝑒1).

The left-hand side of the above equality is the board's expected profit if the incumbent is retained; and the right-hand side

is the board's expected profit from replacement. Recall from the analysis in Section 5.1 that it is optimal for the board to offer

𝑤𝑟(𝑒1) = max{1
2 −

1−𝜆
𝜆2
𝑒1, 0} to the replacement manager. In other words, if the board receives a signal 𝑠 = 1

2 and the incumbent

manager exerts period-1 effort 𝑒1 > 0, the board would then like to lower the wage from 𝑤∗ = 1
2 to 𝑤𝑟(𝑒1) <

1
2 to further

increase its profit. However, it is not allowed to reset the period-1 wage unless it fires the incumbent manager! This gives the

board incentive to replace the incumbent manager even if the signal reveals that ability of the incumbent is equal to that of a

replacement (i.e., 𝑠 = 1
2 ). More formally, fixing 𝑒1 > 0, retaining the incumbent manager after observing signal 𝑠 = 1

2 generates

expected profit

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠̂)

]
(1 −𝑤∗) = 1

4

[
(1 − 𝜆)𝑒1 +

1
4
𝜆2

]
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while it follows from (7) that replacing the manager yields expected profit

𝜋(𝑒1) =
⎧⎪⎨⎪⎩

1
4

(
1
2𝜆 +

1−𝜆
𝜆
𝑒1

)2
for 𝑒1 ≤ 1

2
𝜆2

1−𝜆 ,

1
2 (1 − 𝜆)𝑒1 for 𝑒1 >

1
2
𝜆2

1−𝜆 .
(18)

It is straightforward to verify that
1
4 [(1 − 𝜆)𝑒1 +

1
4𝜆

2] < 𝜋(𝑒1) for all 𝑒1 > 0, that is, anti-entrenchment always emerges in equi-

librium if severance pay cannot be utilized.

The fact that anti-entrenchment can emerge in equilibrium stems from the observation that the board has incentive to modify

the wage after the incumbent manager exerts effort in the first period. Together with the result in Proposition 2, it follows

instantly that when the board's information structure is not informative, it can benefit by lowering the equilibrium standard,

which severance allows.

Outcome-dependent severance pay
Note that severance pay is assumed constant with respect to outcome in the model, that is, the board cannot provide performance-

based severance pay. In practice, a standard severance contract consists of a one-time cash component and an equity element,

such as vesting in stock and options.24 Next we show that the conflict between the ability selection problem and the period-1

moral hazard problem can be alleviated if the board can condition the severance pay on the outcome.

A contract to the incumbent manager is now in the form of a triple (𝑤1, 𝑤2, 𝑘). The variable 𝑤1 is the wage rate when the

incumbent manager stays as in the baseline model. The tuple (𝑤2, 𝑘) constitutes a severance package, where 𝑤2 is the payment

to the incumbent manager if he is forced out and 𝑦 = 1. Again, the variable 𝑘 is the constant severance pay as in the baseline

model.

Proposition 3. Suppose that the signal is noncontractible and the board can provide performance-based severance pay. Then
𝑘∗ = 0 in the optimal contract for all 𝜆 ∈ [0, 1). Moreover, if 𝜆 = 0, then 𝑤∗

1 = 𝑤∗
2 and 𝑠̂∗ = 1

2 .

Proposition 3 states that the lump-sum severance pay is always zero in the optimal contract. This result is intuitive. Constant

severance pay is less effective to the board than performance-based severance pay when the incumbent manager is no longer

in office because a lump-sum payment rewards failure. In other words, the agency problem is more severe for firms that use

severance contract containing a cash component. Therefore, only performance-based severance pay is employed in the optimal

contract.

In the extreme case where 𝜆 = 0, the board has no incentive to deviate from the first-best cutoff. Due to the manager's risk

neutrality, the effort choice of the incumbent manager is determined only by the expected wage. For a given effort level 𝑒1
that the board would like to induce, the expected wage, which is also the total cost of hiring the incumbent manager, is fixed.

Because 𝑒1 is fixed, it remains only to maximize the expected ability of the manager who stays in office in period 2. Hence, the

replacement cutoff stays at the first best in the optimal contract.25

Contractibility of signal
If the board's signal is contractible, a contract to the incumbent manager is fully characterized by {𝑤(𝑠), 𝑟(𝑠), 𝑘(𝑠)} for each

possible signal 𝑠 ∈ [0, 1], where {𝑤(𝑠), 𝑘(𝑠)} is the promised wage and severance pay, and 𝑟(𝑠) ∈ [0, 1] specifies the probability

that the incumbent manager will be retained at signal 𝑠. In particular, 𝑟(𝑠) = 1 indicates that the incumbent manager is retained

whereas 𝑟(𝑠) = 0 indicates that the incumbent is fired with certainty.26 The contract with the replacement manager is again

denoted by 𝑤𝑟.

Proposition 4. Suppose that the signal is contractible and severance pay is constant with respect to outcome. Then 𝑘∗(𝑠) = 0
in the optimal contract for all 𝜆 ∈ [0, 1). Moreover, 𝑟∗(𝑠) = 1 for 𝑠 ∈ [12 , 1] and 𝑟∗(𝑠) = 0 for 𝑠 ∈ [0, 12 ).

To explain the intuition most cleanly, let us consider the case where 𝜆 = 0. Then the probability of success degenerates to

𝜃2𝑒1. First, note that allowing the board to contract on signals gives the board commitment power on its retention decision at no

cost. Because severance pay is a costly commitment device, it is no longer used in the optimal contract. Second, note that the

board can design a contract to induce any effort level without deviating from the socially optimal replacement cutoff. Because

the incumbent manager is risk-neutral and only cares about the expected wage, the board can motivate the incumbent manager

by increasing the expected wage payment when 𝑦 = 1, which is determined by both the wage function𝑤(𝑠) and the replacement

policy 𝑟(𝑠). This in turn implies that fixing effort 𝑒1 and a replacement policy 𝑟(𝑠), the board can adjust the wage function 𝑤(𝑠)
to induce 𝑒1 without changing 𝑟(𝑠). In other words, the board can optimize effort and ability selection separately if the signal is
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contractible. Therefore, the board has no incentive to distort ability selection and the replacement cutoff in the optimal contract

is always
1
2 .

6.2 Extensions
In this section, we show that the main results derived in Propositions 1 and 2 are robust to several different specifications. All

the results in this section are described only informally in the text; the formal models and analyses are in Online Appendix B.

Variance of incumbent manager's ability
We first generalize the success function and investigate how the volatility of the incumbent manager's ability affects our main

results on entrenchment and anti-entrenchment. For simplicity, we assume that 𝜆 = 0 and thus the probability of success in

expression (1) degenerates to 𝜃2𝑒1.27 To investigate the impact of ability volatility, we assume that the ability space is 𝜃 ∈
{𝜃𝐿, 𝜃𝐻} ≡ {1

2 − 𝛿,
1
2 + 𝛿}, where 𝛿 ∈ (0, 12 ]. Clearly, the parameter 𝛿 measures the ex ante variance of the manager's ability,

and the baseline model in Section 4 corresponds to 𝛿 = 1
2 . When 𝛿 <

1
2 , we have that 𝜃𝐿 > 0. Fixing (𝑤, 𝑠̂), the incumbent

manager's period-1 effort is

𝑒1 =
1
2

[(1
2
+ 𝛿

) [
1 − 𝐹1(𝑠̂)

]
+

(1
2
− 𝛿

) [
1 − 𝐹0(𝑠̂)

]]
𝑤, (19)

from which we can see that the incumbent manager, when choosing his period-1 effort level, takes into consideration that his

effort would increase the probability of success even if he is of low ability.28

Intuitively, as 𝛿 increases, selecting a high-ability manager becomes more important to the board relative to inducing more

period-1 effort. As a result, anti-entrenchment is more likely to emerge in equilibrium under the optimal contract for large 𝛿. In

Online Appendix B, we show that anti-entrenchment arises as 𝛼 → ∞ if and only if 𝛿 >

√
2−1
2 ≈ 0.2071.

Figure 4 depicts the equilibrium replacement policy under the optimal contract in the (𝛼, 𝛿) space using the information struc-

ture described in Example 1. The contour plot is shown for (𝛼, 𝛿) ∈ [0, 25] × [0.2, 0.5]. The region of (𝛼, 𝛿) below (respectively,

above) the dotted curve depicts the combination of (𝛼, 𝛿) for which entrenchment (respectively, anti-entrenchment) emerges

under the optimal contract. The downward slope of the contour plot confirms the intuition obtained at the limiting distribution:

anti-entrenchment is more likely to emerge for large 𝛼 and large 𝛿.

Signal of outcome instead of ability
In the baseline model, it is assumed that the board observes a signal of the incumbent manager's ability rather than the outcome

under the incumbent's management. Because the signal is not related to the incumbent manager's effort, the incumbent cannot

increase his retention probability by exerting more effort. When the board receives a signal related to effort or outcome, the

incumbent manager is able to increase his retention probability by exerting more effort. Unlike the baseline model, severance

pay now becomes a double-edged sword. On the one hand, it is a costly commitment device that provides job security (as in the
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baseline model), and hence can motivate more period-1 effort. On the other hand, it increases the value of replacement to the

incumbent manager and may give the incumbent incentive to reduce period-1 effort so as to increase the turnover rate.29 Again,

it can be shown that the main results derived in Proposition 1 are robust. The intuition is as follows.

Let us consider the case where the information structure is sufficiently uninformative. Expecting that the board has noisy

monitoring technology, the incumbent manager has little incentive to manipulate the realization of the signal. In other words,

the aforementioned negative effect of severance pay on the period-1 effort is negligible and the model degenerates to the baseline

at the limit. Therefore, entrenchment is expected to emerge under the optimal contract.

When the information structure is sufficiently informative, the negative effect of the severance pay on the period-1 effort is

strong. Under this scenario, the board can simply avoid the disadvantage of 𝑘 by offering low severance pay. Interestingly, this

does not contradict the possibility of obtaining a net commitment gain. In fact, we can construct a contract with a high wage

and zero severance pay that yields anti-entrenchment and dominates all feasible contracts that induce entrenchment in terms of

board's profit. Thus, anti-entrenchment emerges in the optimal contract.

Signal is private information to the board
When the incumbent manager cannot observe the signal, he cannot condition his period-2 effort on it. Therefore, the sorting

effect is absent. However, the learning effect still exists but with a different expression. Specifically, fixing an equilibrium cutoff

𝑠̂, the incumbent manager updates the belief about his ability to

1 − 𝐹1(𝑠̂)[
1 − 𝐹1(𝑠̂)

]
+

[
1 − 𝐹0(𝑠̂)

] .
It is straightforward to verify that the above expression is greater than

1
2 . Intuitively, the incumbent manager learns from his

retention that his ability is above average. Because ability and effort are complements, a higher estimate of ability implies a

higher marginal return on effort.30 Therefore, the incumbent exerts more effort in period 2 than does the potential replacement

manager with the same wage. In Online Appendix B.3, we show that the result derived in Proposition 2 is robust: if 𝜆 <
√
2 − 1,

entrenchment emerges as 𝛼 → 0 and anti-entrenchment emerges in equilibrium under optimal contract as 𝛼 → ∞.

7 CONCLUSION

This paper explores how the problem of motivating the incumbent manager to exert effort and keeping the flexibility to choose

a high-ability manager interacts with the equilibrium replacement policy. We focus on the situation where the board observes a

noncontractible signal after the incumbent manager exerts effort and solve for the optimal contract. We show that the information

technology that the board uses to assess the incumbent manager's ability is an important determinant of the optimal contract and

of managerial turnover. Unlike the existing literature on managerial turnover, which aims to rationalize entrenchment, we show

that anti-entrenchment can also be optimal in equilibrium for shareholders in some situations. This result is robust to allowing

the signal to be the board's private information and to the possibility that the board observes a signal of the outcome under

the incumbent's management rather than a signal of his ability. The model highlights the board's monitoring technology as an

important determinant of managerial turnover.

There are several interesting questions that can be pursued using the stylized model introduced in this paper. For future

research, it would be interesting to endogenize the informativeness of the board's monitoring technology. In practice, informa-

tiveness is often the choice of the board. Some boards actively monitor their CEOs while some tend to be passive monitors.

Endogenizing the board's monitoring technology could help us better understand the differences of monitoring intensity that

occur across industries.

Another intriguing research avenue would incorporate voluntary departure into the model. In this paper, we assume that the

board and the incumbent manager learn the manager's ability symmetrically. In practice, the incumbent manager may privately

learn his ability (or the firm's future performance under his management) in the interim stage of a contractual term (e.g., Inderst

& Mueller, 2010). In such a scenario, severance pay can be utilized in the optimal contract to provide incentive for the incumbent

manager to step down voluntarily whenever necessary. We find the idea of developing a model that includes private information

for the manager and allows for both forced and voluntary departure very interesting. We leave the exploration of this possibility

for future research.
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E N D N O T E S
1 Although evidence shows forced CEO turnover is increasing over time and indicates boards are using more aggressive replacement policies, it is

widely believed that CEOs are rarely fired and thus are entrenched. For instance, Kaplan and Minton (2012) find that board-driven turnover increased

steadily from 10.93% (1992–1999) to 12.47% (2000–2007) using data from publicly traded Fortune 500 companies.

2 See Laux (2014) for a comprehensive survey of the theoretical models on this topic.

3 In order to focus on the period-1 incentive, Almazan and Suarez (2003) assume away the period-2 moral hazard problem. Therefore, there is no need

for the board to offer a contract to the replacement manager. This corresponds to our analysis in Section 4.

4 Interestingly, Inderst and Klein (2007) show that both underinvestment and overinvestment can arise if there exists competition between division

managers and only one investment can be undertaken.

5 We assume 𝜃𝐿 = 0 for the sake of simplicity. In “Variance of incumbent manager's ability” in Section 6.2, we allow 𝜃𝐿 to be nonzero and again show

that the main results remain unchanged.

6 This assumption is necessary because it excludes the possibility that the board sells the whole firm to the manager in order to provide the greatest

possible incentive in the optimal contract.

7 In general, the output function can also depend on the incumbent manager's ability 𝜃1. Because 𝜃1 is predetermined when the board designs the

contract, all the results naturally hold without adding much economic insight and we drop 𝜃1 in output function (1) for simplicity.

8 Efforts are assumed to be substitutes for simplicity (e.g., Lizzeri, Meyer & Persico, 2002). Once complementarity of effort is introduced, period-2

effort will depend on period-1 effort and the model becomes less tractable. On the one hand, the replacement manager needs to form an expectation

about 𝑒1 and chooses 𝑒2𝑟 according to this expectation. On the other hand, the analysis of the incumbent manager's effort choices is complicated

by his double deviations, that is, deviations in which the incumbent manager switches to a different effort level in period 1 and reoptimizes his

subsequent period-2 effort for the new period-1 effort level.

9 We assume that severance payment is made only after forced departure. In other words, if the manager quits voluntarily, he does not receive any

severance payment. We make this assumption because (i) we focus on the ex ante severance agreements and recent evidence suggests that the

majority of departing CEOs get paid according to the amount specified in the severance contract (Gillan & Nguyen, 2016; Goldman & Huang,

2015; Yermack, 2006); and (ii) according to Yermack (2006), “A CEO who retires voluntarily in the middle of a contract generally is not entitled to

severance unless the board awards it discretionarily or the CEO negotiates to retain his status as an employee.”

10 Both completely informative and completely uninformative information structures are defined using pointwise convergence.

11 If the incumbent is of low ability, the probability of success is always 0 independent of the period-1 effort 𝑒1.

12 Here, we highlight the fact that the incumbent's effort choice depends on the contract (𝑤, 𝑘) and the board's replacement policy 𝑠̂.

13 Again, here we highlight the fact that the board's best response depends on the contract (𝑤, 𝑘) as well as the period-1 effort 𝑒1.

14 The optimal wage to the replacement manager is zero because his effort has no impact on the ultimate outcome when 𝜆 = 0. It is useful to point out

that this is not crucial for the anti-entrenchment result. See Section 5.3 for more discussion of zero payment to the replacement manager.

15 We thank one referee for pointing out this intuition.

16 To see this more clearly, note that fixing a replacement policy 𝑠̂: (i) with probability
1
2
[1 − 𝐹1(𝑠̂)], the incumbent manager is of high ability and

is retained; (ii) with probability
1
2
[1 − 𝐹0(𝑠̂)], the incumbent manager is of low ability and is retained; (iii) with probability

1
2
[𝐹1(𝑠̂) + 𝐹0(𝑠̂)], the

incumbent manager is replaced by a manager with expected ability 𝔼(𝜃𝑟) =
1
2
. Therefore, the expected ability of the manager in period 2 is:

1
2
[1 −

𝐹1(𝑠̂)] ⋅ 1 +
1
2
[𝐹1(𝑠̂) + 𝐹0(𝑠̂)] ⋅ 0 +

1
2
[𝐹1(𝑠̂) + 𝐹0(𝑠̂)] ⋅

1
2
= 1

2
[1 − 𝐹1(𝑠̂)] +

1
4
[𝐹1(𝑠̂) + 𝐹0(𝑠̂)].

17 Here we highlight the fact that the equilibrium cutoff under the optimal contract depends on the informativeness of the board's information structure

𝛼 in our notation.

18 Recently, the concept of 𝜌-concavity has been applied to the study of different topics in economics. See Mares and Swinkels (2014) on auction

theory; and Anderson and Renault (2003), Weyl and Fabinger (2013) on industry organization. To the best of our knowledge, this is the first paper

to use 𝜌-concavity to define information order.

19 It is useful to point out that the incumbent cannot adjust his period-2 effort according to the signal, and the sorting effect is absent if the signal is the

board's private information. We will discuss this situation in Section 6.2.

20 It is assumed that the equilibrium most favorable to the board is selected when multiple equilibria exist.

21 The limited liability constraint for severance pay is rigorously considered in the proof of Proposition 2.

22 The threshold of 0.2231 is obtained in the following two steps. First, for all 𝑠̂ ∈ [0, 1
2
], we show in the Appendix that the board's expected profit

can be bounded above by
3
32
[(1 − 𝜆)2 + 𝜆2] + 1

4
𝜆2 ∫ 1

0 [𝑓1(𝑠; 𝛼)]
2𝑑𝑠, where the second term approaches

1
2
𝜆2 as 𝛼 → ∞. Second, we construct a tuple

(𝑠̂, 𝑤) = ( 1
2
+ 𝜅, (1−𝑠̂)+2𝜓

2(1−𝑠̂)+2𝜓
), where 𝜓 ≡ ( 𝜆

1−𝜆
)2 and 𝜅 > 0, and show that there exists a sufficiently small 𝜅 > 0 such that the constructed tuple satisfies

the limited liability constraint 𝑘(𝑠̂, 𝑤) ≥ 0 and generates more profit than
3
32
[(1 − 𝜆)2 + 𝜆2] + 1

2
𝜆2 as 𝛼 becomes sufficiently large if 𝜓 <

√
233−9
76

, or

equivalently, 𝜆 <

√ √
233−9
76

∕[1 +
√ √

233−9
76

] ≈ 0.2231.

23 The contour plots are shown for (𝛼, 𝜆) ∈ [0, 3] × [0.01, 0.99].
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24 According to Huang (2011), about 40% of the severance contracts issued by S&P 500 firms from 1993 through 2007 contain only a cash component

while 60% of them also include an equity component.

25 It is useful to point out that a severance contract that contains only an equity element is rarely observed in practice. A severance contract with a

one-time cash component can be rationalized by the assumption that the manager is more risk-averse than the board. Under this scenario, the optimal

contract may involve some degree of lump-sum payment in response to risk sharing.

26 Due to the board's risk neutrality, randomization is not optimal except in the case where the board is indifferent between retaining and firing the

incumbent manager. In such a case, we assume that the incumbent manager is retained with probability 1.

27 In Online Appendix B, we further generalize the firm's success function to 𝜃2𝑒
1+𝜏
1 , where 𝜏 ∈ (−1, 1) measures the relative importance of effort

compared to ability selection. Again, we show that the main results on entrenchment and anti-entrenchment are robust.

28 Equation (19) degenerates to equation (2) at 𝛿 = 1
2
.

29 Note that in this extension the equilibrium cutoff influences agent's period-1 effort choice as in the baseline model in Section 4. In addition, the

conjectured period-1 effort will also influence the board's equilibrium decision on the replacement cutoff. This economic insight is in some sense

similar to that in Taylor and Yildirim (2011). They study the benefits and costs of different review policies and identify conditions under which

the evaluator commits not to utilize the agent's information and chooses blind review as the optimal policy. The main issue in their model is that

the evaluator's prior belief about the quality of the project is endogenous, and this belief is determined by the agent's effort. Therefore, the standard

influences the effort and the conjectured effort in turn influences the standard.

30 It is useful to point out that the incumbent is easier to motivate than the replacement as in Casamatta and Guembel (2010) but for a different reason.

Specifically, the incumbent manager is easier to motivate in Casamatta and Guembel (2010) due to his reputational concern, whereas in our model

the ease of his motivation is due to his awareness of his ability and the complementarity between ability and effort.
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APPENDIX: PROOFS OF THE PROPOSITIONS
Proof of Lemma 1.

Proof. First, it is straightforward to verify that 𝑒
1 = 1

2 (1 − 𝜆)[1 +
1
2 [𝐹0(𝑠̂

) − 𝐹1(𝑠̂)]] and 𝑒
2𝑟 = 1

2𝜆. Moreover, fixing

𝑠̂ = 𝑠̂, pointwise optimization for each possible signal implies instantly that for 𝑠 ≥ 𝑠̂, the board enforces effort 𝑒
2 (𝑠) =

𝑓1(𝑠)
𝑓1(𝑠)+𝑓0(𝑠)

𝜆.

Second, the first-order condition with respect to 𝑠̂ yields

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

[
(1 − 𝜆)𝑒

1 + 𝜆𝑒
2 (𝑠̂)] − 1

2
[
𝑒
2 (𝑠̂)]2 = (1 − 𝜆)𝑒

1 + 𝜆𝑒
2𝑟

2
− 1

2
[
𝑒
2𝑟

]2
.

Carrying out the algebra, the above condition can be further simplified as

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂) =

1
2
.

The above equality, together with Assumptions 1 and 3, implies that 𝑠̂ = 1
2 . This completes the proof. □

Proof of Proposition 1.

Proof. It is without loss of generality to normalize the information structure such that 𝑠 = 1
2𝐹1(𝑠) +

1
2𝐹0(𝑠) for 𝑠 ∈ [0, 1], which in

turn implies that 𝑓1(𝑠) + 𝑓0(𝑠) = 2 for 𝑠 ∈ [0, 1]. Moreover, Assumption 1 implies that 𝑓1(𝑠) is strictly increasing in 𝑠; Assump-

tion 2 implies that 𝑓1(0) = 0 and 𝑓1(1) = 2; and Assumption 3 implies that 𝑓1(
1
2 ) = 1 and𝐹1(𝑠) + 𝐹0(1 − 𝑠) = 1 for all 𝑠 ∈ [0, 1].

The proof proceeds in two steps. First, we prove uniform convergence of 𝐹1(⋅) as 𝛼 → ∞ and 𝛼 → ∞, and derive the corre-

sponding limiting distributions in Lemmas A1 and A2, respectively. Second, based on the established properties of 𝐹1(⋅), we

prove the anti-entrenchment (respectively, entrenchment) result by constructing a contract that induces an equilibrium cutoff

greater (respectively, less) than
1
2 and generates a higher profit than does any contract that induces entrenchment (respectively,

anti-entrenchment) as 𝛼 becomes sufficiently large (respectively, small). □

Lemma A1 (Uniform Convergence of 𝐹1(⋅) as 𝛼 → ∞). For any given 𝜖 > 0, there exists a threshold𝑁𝑎 such that for 𝛼 > 𝑁𝑎,
𝐹1(𝑠; 𝛼) < 𝜖 for all 𝑠 ∈ [0, 12 ] and 𝐹1(𝑠; 𝛼) < (2𝑠 − 1) + 𝜖 for all 𝑠 ∈ [12 , 1].

Proof. It follows from the definition of the completely informative information structure that, given
1
2𝜖, there exists a threshold

𝑁𝑎 such that

𝑓1

(1
2
(1 − 𝜖); 𝛼

)
<

1
2
𝜖, for 𝛼 > 𝑁𝑎. (A.1)

Therefore, we have that

𝐹1

(1
2
; 𝛼

)
= ∫

1
2

0
𝑓1(𝑡; 𝛼)𝑑𝑡 = ∫

1
2 (1−𝜖)

0
𝑓1(𝑡; 𝛼)𝑑𝑡 + ∫

1
2

1
2 (1−𝜖)

𝑓1(𝑡; 𝛼)𝑑𝑡

≤ 1
2
(1 − 𝜖)1

2
𝜖 +

[1
2
− 1

2
(1 − 𝜖)

]
< 𝜖,

 27:742–771. https://doi.org/10.1111/jems.12248
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where the first inequality follows from (A.1) and 𝑓1(𝑠) ≤ 1 for 𝑠 ∈ [0, 12 ]. It follows immediately from the above inequality that

𝐹1(𝑠; 𝛼) ≤ 𝐹1
(1
2
; 𝛼

)
< 𝜖, for all 𝑠 ∈

[
0, 1

2

]
.

Similarly, for all 𝑠 ∈ [12 , 1], we have that

𝐹1(𝑠; 𝛼) = 2𝑠 − 𝐹0(𝑠; 𝛼) = (2𝑠 − 1) + 𝐹1(1 − 𝑠; 𝛼) < (2𝑠 − 1) + 𝜖, for 𝛼 > 𝑁𝑎,

where the first equality follows from the normalization that
1
2 [𝐹1(𝑠; 𝛼) + 𝐹0(𝑠; 𝛼)] = 𝑠 for all 𝑠 ∈ [0, 1] and the second equality

follows from Assumption 3. This completes the proof. □

Lemma A2 (Uniform Convergence of 𝐹1(⋅) as 𝛼 → 0). For any given 𝜖 > 0, there exists a threshold𝑁𝑒 such that for 𝛼 < 𝑁𝑒,
𝐹1(𝑠; 𝛼) > 𝑠 − 𝜖 for all 𝑠 ∈ [0, 1].

Proof. It follows directly from the definition of the completely uninformative information structure that fixing 𝜖 > 0, there exists

a threshold𝑁𝑒 such that

𝑓1

(1
2
𝜖; 𝛼

)
> 1 − 𝜖, for 𝛼 < 𝑁𝑒. (A.2)

Thus, we have that

𝑠 − 𝐹1(𝑠; 𝛼) = ∫
𝑠

0

[
1 − 𝑓1(𝑡; 𝛼)

]
𝑑𝑡 ≤ ∫

1
2

0

[
1 − 𝑓1(𝑡; 𝛼)

]
𝑑𝑡

= ∫
1
2 𝜖

0

[
1 − 𝑓1(𝑡; 𝛼)

]
𝑑𝑡 + ∫

1
2

1
2 𝜖

[
1 − 𝑓1(𝑡; 𝛼)

]
𝑑𝑡

≤ 1
2
𝜖 + 𝜖

(1
2
− 1

2
𝜖
)
< 𝜖, for all 𝑠 ∈

[
0, 1

2

]
, (A.3)

where the first inequality follows from 𝑓1(𝑡; 𝛼) ≤ 𝑓1( 12 ; 𝛼) = 1 for all 𝑡 ∈ [0, 12 ], and the second inequality follows from (A.2)

and the fact that 1 − 𝑓1(𝑡; 𝛼) ≤ 1. For all 𝑠 ∈ [12 , 1], we have that

𝑠 − 𝐹1(𝑠; 𝛼) = 𝑠 −
[
2𝑠 − 𝐹0(𝑠; 𝛼)

]
= (1 − 𝑠) − 𝐹1(1 − 𝑠; 𝛼) < 𝜖,

where the second equality follows from 𝐹1(1 − 𝑠; 𝛼) + 𝐹0(𝑠; 𝛼) = 1 and the inequality follows from (A.3). This completes the

proof. □

Now we can prove Proposition 1. Recall that the board's expected profit is

𝜋(𝑠̂; 𝛼) = 1
8

[
1 − 𝐹1(𝑠̂; 𝛼)

] {
1
2

[
1 − 𝐹1(𝑠̂; 𝛼)

]
+ 1

2
[
𝐹1(𝑠̂; 𝛼) + 𝐹0(𝑠̂; 𝛼)

] 𝑓1(𝑠̂; 𝛼)
𝑓1(𝑠̂; 𝛼) + 𝑓0(𝑠̂; 𝛼)

}
.

Together with the fact that 𝑓0(𝑠; 𝛼) = 𝑓1(1 − 𝑠; 𝛼), 𝑓1(𝑠; 𝛼) + 𝑓0(𝑠; 𝛼) = 2, and 𝐹0(𝑠; 𝛼) = 1 − 𝐹1(1 − 𝑠; 𝛼) for all 𝑠 ∈ [0, 1], the

expected profit function can be simplified as follows:

𝜋(𝑠̂; 𝛼) = 1
16

[
1 − 𝐹1(𝑠̂; 𝛼)

] {[
1 − 𝐹1(𝑠̂; 𝛼)

]
+ 𝑠̂𝑓1(𝑠̂; 𝛼)

}
.

Anti-Entrenchment Note that 𝜋(𝑠̂; 𝛼) can be bounded above by

𝜋(𝑠̂; 𝛼) < 1
16

(1 + 𝑠̂) < 3
32

for all 𝑠̂ ∈
[
0, 1

2

]
.

The first inequality follows from the fact that 1 − 𝐹1(𝑠̂; 𝛼) < 1 and 𝑓1(𝑠̂; 𝛼) < 𝑓1(
1
2 ; 𝛼) ≡ 1 for all 𝑠̂ ∈ [0, 12 ], and the second

inequality follows from the postulated 𝑠̂ ∈ [0, 12 ].
To complete the proof for the case of anti-entrenchment, it suffices to construct a cutoff strictly above

1
2 that generates a profit

more than
3
32 . It follows from Lemma A1 that fixing 𝜖 > 0, there exists a threshold 𝑁𝑎 such that for 𝛼 > 𝑁𝑎, 1 − 𝐹1(𝑠̂; 𝛼) >



WU AND WENG 3763

2 − 2𝑠̂ − 𝜖 for all 𝑠̂ ∈ (12 , 1). Moreover, given 𝑠̂ ∈ (12 , 1) and 𝜖′ ∶= 𝜖

1+𝜖 > 0, Assumption 4 implies that there exists a threshold

𝑁 ′
𝑎 such that

1
2𝑓1(𝑠̂) =

𝑓1(𝑠̂)
𝑓1(𝑠̂)+𝑓0(𝑠̂)

> 1 − 𝜖′ for 𝛼 > 𝑁 ′
𝑎. Let 𝛼 ∶= max{𝑁𝑎,𝑁 ′

𝑎}. It follows immediately that

𝜋(𝑠̂; 𝛼) > 1
16

(2 − 2𝑠̂ − 𝜖)
[
(2 − 2𝑠̂ − 𝜖) + 2𝑠̂(1 − 𝜖′)

]
, for 𝛼 > 𝛼.

Therefore, the expected profit under cutoff
1
2 (1 + 𝜖) can be bounded below by

𝜋
(1
2
(1 + 𝜖); 𝛼

)
>

1
16

(1 − 2𝜖)
[
(1 − 2𝜖) + (1 + 𝜖)(1 − 𝜖′)

]
= 1

8
(1 − 2𝜖)(1 − 𝜖),

and it remains to find 𝜖 such that

1
8
(1 − 2𝜖)(1 − 𝜖) ≥ 3

32
.

It can be verified that the above inequality holds if 𝜖 ≤ 3−
√
7

4 . This completes the proof of anti-entrenchment.

Entrenchment It suffices to show that there exists a threshold 𝛼 such that for 𝛼 < 𝛼, 𝜋(𝑠̂; 𝛼) < 𝜋(0; 𝛼) ≡ 1
16 for all 𝑠̂ ∈ [12 , 1].

Note that fixing any Δ ∈ (0, 12 ), we have that

1 − 𝐹1(1 − Δ; 𝛼) = 𝐹0(Δ; 𝛼) = ∫
Δ

0
𝑓0(𝑡)𝑑𝑡 < 2Δ,

which in turn implies that

𝜋(𝑠̂; 𝛼) = 1
16

[
1 − 𝐹1(𝑠̂; 𝛼)

] {[
1 − 𝐹1(𝑠̂; 𝛼)

]
+ 𝑠̂𝑓1(𝑠̂; 𝛼)

}
≤ 1

8
(1 − 𝑠̂) [2(1 − 𝑠̂) + 2]

≤ 1
4
Δ(Δ + 1), for all 𝑠̂ ∈ [1 − Δ, 1].

Let Δ ∶=
√
2−1
2 . The right-hand side of the above inequality is equal to

1
16 . This in turn implies that 𝑠̂ ∈ [1 − Δ, 1] cannot be the

equilibrium replacement policy under optimal contract, and hence it remains to show that there exists a threshold 𝛼 such that for

𝛼 < 𝛼, 𝜋(𝑠̂; 𝛼) < 𝜋(0; 𝛼) ≡ 1
16 for all 𝑠̂ ∈ [12 , 1 − Δ]. Note that from the definition of the completely uninformative information

structure, fixing any 𝜖′ > 0, there exists a threshold𝑁 ′
𝑒 such that

1
2
𝑓1(𝑠̂) ≡ 𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
<

1
2
+ 𝜖′, for all 𝑠̂ ∈

[1
2
, 1 − Δ

]
and 𝛼 < 𝑁 ′

𝑒. (A.4)

Moreover, it follows from Lemma A2 that, fixing 𝜖 > 0, there exists a threshold𝑁𝑒 such that

𝐹1(𝑠̂; 𝛼) > 𝑠̂ − 𝜖, for all 𝑠̂ ∈ [0, 1] and 𝛼 < 𝑁𝑒. (A.5)

Let 𝜖′ = 𝜖 =
√
3
3 − 1

2 and 𝛼 = min{𝑁𝑒,𝑁 ′
𝑒}. Then the expected profit for 𝛼 < 𝛼 can be bounded above by

𝜋(𝑠̂) ≡ 1
16

[
1 − 𝐹1(𝑠̂; 𝛼)

] {[
1 − 𝐹1(𝑠̂; 𝛼)

]
+ 𝑠̂𝑓1(𝑠̂; 𝛼)

}
<

1
16

(1 − 𝑠̂ + 𝜖)
[
(1 − 𝑠̂ + 𝜖) + (1 + 2𝜖′)

]
= 1

16
(1 − 𝑠̂ + 𝜖)(2 − 𝑠̂ + 3𝜖)

≤ 3
16

(1
2
+ 𝜖

)2
= 1

16
, for all 𝑠̂ ∈

[1
2
, 1 − Δ

]
,

where the first inequality follows from (A.4), (A.5), and 𝑠̂ ≤ 1; the second inequality follows from 𝑠̂ ≥ 1
2 ; and the last equality

follows from the postulated 𝜖 =
√
3
3 − 1

2 . This completes the proof.
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Proof of Proposition 2.

Proof. Define ̂(𝛼) as the set of the cutoff signals that can be induced in equilibrium at wage 𝑤 = 1
2 without violating the

nonnegativity constraint for 𝑘, that is,

̂(𝛼) ∶=
{
𝑠̂

||||𝑘(
𝑠̂,
1
2
; 𝛼

) ≥ 0 & 𝑠̂ ∈ [0, 1]
}
.

If 𝑠̂ ∈ ̂(𝛼), the board's expected profit can be written as

𝜋̄(𝑠̂; 𝛼) ∶= 𝜋
(
𝑠̂,
1
2
; 𝛼

) ≡ 1
16

[
(1 − 𝜆)2[1 − 𝐹1(𝑠̂)] + 𝜆2𝑓1(𝑠̂)

]
×

[
1 − 𝐹1(𝑠̂) + 𝑠̂𝑓1(𝑠̂)

]
+ 1

4
𝜆2 ∫

1

𝑠̂

[𝑓1(𝑠) − 𝑓1(𝑠̂)]𝑓1(𝑠)𝑑𝑠.

If 𝑠̂ ∉ ̂(𝛼), then 𝑤 = 1
2 cannot be sustained. Define

(𝑠̂; 𝛼) ∶= {𝑤|𝑘(𝑠̂, 𝑤; 𝛼) ≥ 0 &𝑤 ∈ [0, 1]},

which is the set of wages that can induce 𝑠̂ without violating the nonnegativity constraint for 𝑘. It is clear that 𝜋(𝑠̂, 𝑤∗; 𝛼) ≤
𝜋(𝑠̂, 12 ; 𝛼) ≡ 𝜋̄(𝑠̂; 𝛼) for all 𝑠̂ ∈ [0, 1]. □

Anti-Entrenchment For 𝑠̂ ∈ [0, 12 ], the expected profit can be bounded above by

𝜋(𝑠̂, 𝑤; 𝛼) ≤ 𝜋̄(𝑠̂; 𝛼) ≡ 1
16

[
(1 − 𝜆)2[1 − 𝐹1(𝑠̂; 𝛼)] + 𝜆2𝑓1(𝑠̂; 𝛼)

]
×

[
1 − 𝐹1(𝑠̂; 𝛼) + 𝑠̂𝑓1(𝑠̂; 𝛼)

]
+ 1

4
𝜆2 ∫

1

𝑠̂

[𝑓1(𝑠; 𝛼) − 𝑓1(𝑠̂; 𝛼)]𝑓1(𝑠; 𝛼)𝑑𝑠

≤ 1
16

[
(1 − 𝜆)2 + 𝜆2

] [
1 − 𝐹1(𝑠̂; 𝛼) + 𝑠̂𝑓1(𝑠̂; 𝛼)

]
+ 1

4
𝜆2 ∫

1

𝑠̂

[
𝑓1(𝑠; 𝛼)

]2
𝑑𝑠

<
3
32

[
(1 − 𝜆)2 + 𝜆2

]
+ 1

4
𝜆2 ∫

1

0

[
𝑓1(𝑠; 𝛼)

]2
𝑑𝑠,

where the first inequality and second inequality follow from 𝑓1(𝑠; 𝛼) ∈ [0, 1] for all 𝑠 ∈ [0, 12 ]. Next, it can be verified that

lim
𝛼→∞

1
4
𝜆2 ∫

1

0

[
𝑓1(𝑠; 𝛼)

]2
𝑑𝑠 = 1

4
𝜆2

[
lim
𝛼→∞∫

1
2

0

[
𝑓1(𝑠; 𝛼)

]2
𝑑𝑠 + lim

𝛼→∞∫
1

1
2

[
𝑓1(𝑠; 𝛼)

]2
𝑑𝑠

]

= 1
4
𝜆2 ∫

1

1
2

4𝑑𝑠 = 1
2
𝜆2.

Therefore, it remains to find 𝑠̂ >
1
2 and 𝑤 ∈ [0, 1] that satisfy the nonnegativity condition for 𝑘, and generate a profit no less

than
3
32 [(1 − 𝜆)

2 + 𝜆2] + 1
2𝜆

2. It follows from equation (15) that the limited liability constraint for 𝑘 is equivalent to

𝑓1(𝑠̂; 𝛼)
𝑓1(𝑠̂; 𝛼) + 𝑓0(𝑠̂; 𝛼)

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠̂)

]
(1 −𝑤) ≤ 𝜋(𝑒1).

Equations (7), (8), and (9), together with the facts that
𝑓1(𝑠̂;𝛼)

𝑓1(𝑠̂;𝛼)+𝑓0(𝑠̂;𝛼)
< 1 and 𝜋(𝑒1) ≥ 1

2 (1 − 𝜆)𝑒1, imply that it suffices to find a

tuple (𝑤, 𝑠̂) ∈ [0, 1] × (12 , 1] to satisfy the following condition:

1 − 𝐹1(𝑠̂; 𝛼)
4

(1 − 𝜆)2𝑤 ≥
{

1 − 𝐹1(𝑠̂; 𝛼)
2

(1 − 𝜆)2 +
𝑓1(𝑠̂; 𝛼)

2
𝜆2

}
𝑤(1 −𝑤).
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Assuming that it is optimal for the board to induce zero effort from the replacement manager with the constructed tuple (𝑤, 𝑠̂),
from equation (18), we have the following additional condition:

1 − 𝐹1(𝑠̂; 𝛼)
2

(1 − 𝜆)𝑤 ≥ 1
2
𝜆2

1 − 𝜆
.

Let 𝜓 ∶= ( 𝜆1−𝜆 )
2. The above two inequalities can be rewritten as

1 − 𝐹1(𝑠̂; 𝛼)
2

≥ {
1 − 𝐹1(𝑠̂; 𝛼) + 𝑓1(𝑠̂; 𝛼)𝜓

}
(1 −𝑤), (A.6)

and [
1 − 𝐹1(𝑠̂; 𝛼)

]
𝑤 ≥ 𝜓. (A.7)

Lemma A1 states that fixing 𝑠̂ >
1
2 ,

1−𝐹1(𝑠̂;𝛼)
2 can be arbitrarily close to 1 − 𝑠̂ when 𝛼 → ∞. Similarly, it follows from

Assumption 4 that fixing 𝑠̂ >
1
2 , 𝑓1(𝑠̂) can be arbitrarily close to 2 when 𝛼 → ∞. Thus, letting 𝛼 → ∞, conditions (A.6) and

(A.7) can be combined and simplified as

𝑤 ≥ max
{

(1 − 𝑠̂) + 2𝜓
2(1 − 𝑠̂) + 2𝜓

,
𝜓

2(1 − 𝑠̂)

}
. (A.8)

Next, note that the board's expected profit from the contract (𝑤, 𝑘) that induces cutoff signal 𝑠̂ as 𝛼 → ∞ can be bounded below

by

lim
𝛼→∞

𝜋(𝑠̂, 𝑤) = 𝑤(1 −𝑤) × lim
𝛼→∞

{
(1 − 𝜆)2

(
1 − 𝐹1(𝑠̂)

2

)2
+ 𝜆2 ∫

1

𝑠̂

(
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)

)2
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

2
×

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

×
[
(1 − 𝜆)2

1 − 𝐹1(𝑠̂)
2

+ 𝜆2
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)

]}
= 𝑤(1 −𝑤) × lim

𝛼→∞

{1
4

[
(1 − 𝜆)2[1 − 𝐹1(𝑠̂)] + 𝜆2𝑓1(𝑠̂)

]
×

[
1 − 𝐹1(𝑠̂) + 𝑠̂𝑓1(𝑠̂)

]
+ 𝜆2 ∫

1

𝑠̂

[𝑓1(𝑠) − 𝑓1(𝑠̂)]𝑓1(𝑠)𝑑𝑠

}

≥ 𝑤(1 −𝑤) × lim
𝛼→∞

{1
4

[
(1 − 𝜆)2[1 − 𝐹1(𝑠̂)] + 𝜆2𝑓1(𝑠̂)

]
×

[
1 − 𝐹1(𝑠̂) + 𝑠̂𝑓1(𝑠̂)

]}
= 𝑤(1 −𝑤)

[
(1 − 𝜆)2(1 − 𝑠̂) + 𝜆2

]
.

Therefore, it remains to find (𝑤, 𝑠̂) such that

𝑤(1 −𝑤)
[
(1 − 𝜆)2(1 − 𝑠̂) + 𝜆2

] ≥ 3
32

[
(1 − 𝜆)2 + 𝜆2

]
+ 1

2
𝜆2,

which is equivalent to

𝑤(1 −𝑤) [(1 − 𝑠̂) + 𝜓] ≥ 3
32

+ 19
32
𝜓

subject to constraint (A.8). Pick 𝑠̂ = 1
2 + 𝜅 for sufficiently small 𝜅 > 0, and𝑤 = (1−𝑠̂)+2𝜓

2(1−𝑠̂)+2𝜓 . The above inequality can be simplified

as

( 12 − 𝜅 + 2𝜓) × ( 12 − 𝜅)
2(1 − 2𝜅 + 2𝜓)

≥ 3
32

+ 19
32
𝜓. (A.9)
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For 𝑤 to be well-defined, we also need to satisfy

(1 − 𝑠̂) + 2𝜓
2(1 − 𝑠̂) + 2𝜓

= 𝑤 ≥
{

(1 − 𝑠̂) + 2𝜓
2(1 − 𝑠̂) + 2𝜓

,
𝜓

2(1 − 𝑠̂)

}
,

which is equivalent to

1
2 − 𝜅 + 2𝜓
1 − 2𝜅 + 2𝜓

≥ 𝜓

1 − 2𝜅
. (A.10)

Taking limits as 𝜅 → 0 on all sides of (A.9) and (A.10) yields

1
2
+ 2𝜓 ≥ (1 + 2𝜓)

(3
8
+ 19

8
𝜓

)
⇒ 𝜓 ≤

√
233 − 9
76

≈ 0.0824,

and

1
2 + 2𝜓
1 + 2𝜓

≥ 𝜓 ⇒ 𝜓 ≤ 1 +
√
5

4
≈ 0.8090.

Therefore, for 𝜓 <

√
233−9
76 , or equivalently, 𝜆 <

√√
233−9
76 ∕[1 +

√√
233−9
76 ] ≈ 0.2231, we can always construct a tuple (𝑤, 𝑠̂)

with 𝑠̂ >
1
2 to satisfy the nonnegativity constraint for 𝑘, and generate more profit than that under any contract that induces a

cutoff signal less than
1
2 . This completes the proof of anti-entrenchment.

Entrenchment First, notice that 𝑘(0, 12 ; 𝛼) ≥ 0 always holds, and hence
1
2 ∈ (0; 𝛼). Therefore, it suffices to show that

𝜋(𝑠̂, 𝑤; 𝛼) < 𝜋̄(0; 𝛼) for all 𝑠̂ ∈ [12 , 1] and 𝑤 ∈ (𝑠̂; 𝛼) if 𝛼 is small enough. The expected profit 𝜋̄(0; 𝛼) can be rewritten as

𝜋̄(0; 𝛼) = 1
16

[
(1 − 𝜆)2 + 𝜆2

]
+ 1

4
𝜆2 ∫

1

0
[𝑓1(𝑠) − 𝑓1(0)]𝑓1(𝑠)𝑑𝑠 =

1
16

[
(1 − 𝜆)2 + 𝜆2

]
+ (0; 𝛼),

where (𝑠̂; 𝛼) ∶= 1
4𝜆

2 ∫ 1
𝑠̂
[𝑓1(𝑠) − 𝑓1(𝑠̂)]𝑓1(𝑠)𝑑𝑠. It can be verified that (𝑠̂; 𝛼) is strictly decreasing in 𝑠̂ because 𝑓1(𝑠̂) is strictly

increasing in 𝑠̂. To proceed, it is useful to prove the following intermediate result.

Lemma A3. There exists Δ† ∈ (0, 12 ) such that 𝜋(𝑠̂, 𝑤; 𝛼) < 𝜋̄(0; 𝛼) for all 𝑠̂ ∈ [1 − Δ†, 1] and 𝑤 ∈ (𝑠̂; 𝛼) as 𝛼 → 0.

Proof. It follows from Lemma A2 and Assumption 4 that for any 𝜖 > 0 there exists a threshold 𝑁(𝜖) such that for 𝛼 < 𝑁(𝜖),
1 − 𝐹1(1 − Δ†) < Δ† + 𝜖 for all Δ† ∈ [0, 1]; and 𝑓1(𝑠̂; 𝛼) < 1 + 𝜖 for all 𝑠̂ ∈ [12 , 1 − Δ†]. Next, note that the expected profit upon

replacement can be bounded above by

𝜋(𝑒1; 𝛼) − 𝑘 ≤ 1
4

(1
2
𝜆 + 1 − 𝜆

𝜆
𝑒1

)2
= 1

16

(
𝜆 + (1 − 𝜆)2

𝜆

[
1 − 𝐹1(𝑠̂; 𝛼)

]
𝑤

)2

≤ 1
16

(
𝜆 + (1 − 𝜆)2

𝜆

[
1 − 𝐹1(𝑠̂; 𝛼)

])2
, (A.11)

where the first inequality follows from (12) and the fact that
1
4 (

1
2𝜆 +

1−𝜆
𝜆
𝑒1)2 ≥ 1

2 (1 − 𝜆)𝑒1 for all 𝑒1 ∈ [0, 1]; and the second

inequality follows from 𝑤 ≤ 1. Therefore, for all 𝑠̂ ∈ [1 − Δ†, 1], the board's expected profit can be bounded above by

𝜋(𝑠̂, 𝑤; 𝛼) = ∫
1

𝑠̂

{
𝑓1(𝑠; 𝛼)

𝑓1(𝑠; 𝛼) + 𝑓0(𝑠; 𝛼)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠)

]
(1 −𝑤)

}
𝑑
𝐹1(𝑠; 𝛼) + 𝐹0(𝑠; 𝛼)

2

+ 1
2

[
𝐹1(𝑠̂; 𝛼) + 𝐹0(𝑠̂; 𝛼)

] [
𝜋(𝑒1) − 𝑘

]
≤ 1

2
[
1 − 𝐹1(𝑠̂; 𝛼)

] {
1 − 𝐹1(𝑠̂; 𝛼)

2
(1 − 𝜆)2 +

𝑓1(𝑠̂; 𝛼)
𝑓1(𝑠̂; 𝛼) + 𝑓0(𝑠̂; 𝛼)

𝜆2
}
𝑤(1 −𝑤)
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+ 1
32

[
𝐹1(𝑠̂; 𝛼) + 𝐹0(𝑠̂; 𝛼)

] (
𝜆 + (1 − 𝜆)2

𝜆

[
1 − 𝐹1(𝑠̂; 𝛼)

])2
+ 4𝑤(1 −𝑤)(𝑠̂; 𝛼)

≤ 1
8

[
1 − 𝐹1(𝑠̂; 𝛼)

] {
1 − 𝐹1(𝑠̂; 𝛼)

2
(1 − 𝜆)2 +

𝑓1(𝑠̂; 𝛼)
𝑓1(𝑠̂; 𝛼) + 𝑓0(𝑠̂; 𝛼)

𝜆2
}

+ 1
16

(
𝜆 + (1 − 𝜆)2

𝜆

[
1 − 𝐹1(𝑠̂; 𝛼)

])2
+ (𝑠̂; 𝛼)

≤ 1
8
(Δ† + 𝜖)

[
Δ† + 𝜖

2
(1 − 𝜆)2 + 𝜆2

]
+ 1

16

[
𝜆 + (1 − 𝜆)2

𝜆
(Δ† + 𝜖)

]2
+ (0; 𝛼).

The first inequality follows from (13), (14), and (A.11); the second inequality follows from 𝑤(1 −𝑤) ≤ 1
4 and 𝐹1(𝑠̂; 𝛼) ≤

𝐹0(𝑠̂; 𝛼) ≤ 1; and the third inequality follows from 1 − 𝐹1(𝑠̂; 𝛼) ≤ 1 − 𝑠̂ + 𝜖 ≤ Δ† + 𝜖 and
𝑓1(𝑠̂;𝛼)

𝑓1(𝑠̂;𝛼)+𝑓0(𝑠̂;𝛼)
≤ 1. Note that the last

expression reduces to
1
16𝜆

2 + (0; 𝛼) as Δ† ↓ 0 and 𝜖 ↓ 0. Moreover, we have that

1
16
𝜆2 + (0; 𝛼) < 1

16
[
(1 − 𝜆)2 + 𝜆2

]
+ (0; 𝛼) ≡ 𝜋̄(0; 𝛼).

Therefore, we can always find sufficiently small Δ† and 𝜖 such that

1
8
(Δ† + 𝜖)

[
Δ† + 𝜖

2
(1 − 𝜆)2 + 𝜆2

]
+ 1

16

[
𝜆 + (1 − 𝜆)2

𝜆
(Δ† + 𝜖)

]2
+ (0; 𝛼) < 1

16
[
(1 − 𝜆)2 + 𝜆2

]
+ (0; 𝛼).

This completes the proof. □

Now we can prove the entrenchment result. Lemma A3 states that 𝑠 ∈ [1 − Δ†, 1] cannot be equilibrium under the optimal

contract as 𝛼 → 0, and hence it remains to show that this is the also case for all 𝑠 ∈ [12 , 1 − Δ†] as 𝛼 → 0. Recall that 𝜋̄(𝑠̂; 𝛼) is

the maximum expected profit without the limited liability constraint for 𝑘, implying that 𝜋(𝑠̂, 𝑤; 𝛼) ≤ 𝜋̄(𝑠̂; 𝛼) for all 𝑠̂ ∈ [0, 1]
and𝑤 ∈ [0, 1]. Moreover, from the proof of Lemma A3, we have that fixing any 𝜖 > 0, there exists a threshold𝑁(𝜖) such that for

𝛼 < 𝑁(𝜖): (i) 1 − 𝐹1(1 − Δ†) < Δ† + 𝜖 for all Δ† ∈ [0, 1]; (ii) 𝑓1(𝑠̂; 𝛼) < 1 + 𝜖 for all 𝑠̂ ∈ [12 , 1 − Δ†]. Therefore, the expected

profit for 𝛼 < 𝑁(𝜖) can be bounded above by

𝜋̄(𝑠̂; 𝛼) = 1
16

[
(1 − 𝜆)2[1 − 𝐹1(𝑠̂; 𝛼)] + 𝜆2𝑓1(𝑠̂)

]
×

[
1 − 𝐹1(𝑠̂; 𝛼) + 𝑠̂𝑓1(𝑠̂; 𝛼)

]
+ 1

4
𝜆2 ∫

1

𝑠̂

[𝑓1(𝑠; 𝛼) − 𝑓1(𝑠̂; 𝛼)]𝑓1(𝑠; 𝛼)𝑑𝑠

≤ 1
16

[
(1 − 𝜆)2(1 − 𝑠̂ + 𝜖) + 𝜆2(1 + 𝜖)

]
× [(1 − 𝑠̂ + 𝜖) + 𝑠̂(1 + 𝜖)] + (𝑠̂; 𝛼)

<
1
16

[
(1 − 𝜆)2

(1
2
+ 𝜖

)
+ 𝜆2(1 + 𝜖)

]
× [1 + 2𝜖] + (0; 𝛼), for all 𝑠̂ ∈

[1
2
, 1 − Δ†

]
,

where the last inequality follows from 𝑠̂ ∈ [12 , 1] and (𝑠̂; 𝛼) < (0; 𝛼). Therefore, it suffices to find a sufficiently small 𝜖 such

that

1
16

[
(1 − 𝜆)2(1

2
+ 𝜖) + 𝜆2(1 + 𝜖)

]
× [1 + 2𝜖] + (0; 𝛼) < 1

16
[
(1 − 𝜆)2 + 𝜆2

]
+ (0; 𝛼),

which is obvious. This completes the proof.

Proof of Proposition 3. Given (𝑤1, 𝑤2, 𝑘) and belief about period-1 effort 𝑒1, board's optimal wage to the replacement manager

can be derived as

𝑤𝑟(𝑤2, 𝑒1) = max
{

1 −𝑤2
2

− 1 − 𝜆
𝜆2
𝑒1, 0

}
. (A.12)
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Therefore, the board's expected profit after replacement is

𝜋(𝑤2, 𝑒1) =
⎧⎪⎨⎪⎩

1
4

(
1−𝑤2
2 𝜆 + 1−𝜆

𝜆
𝑒1

)2
for 𝑒1 ≤ 1−𝑤2

2
𝜆2

1−𝜆 ,

1
2 (1 − 𝜆)𝑒1(1 −𝑤2) for 𝑒1 >

1−𝑤2
2

𝜆2

1−𝜆 .

Fixing (𝑤1, 𝑤2, 𝑘) and belief about 𝑠̂, the incumbent manager chooses 𝑒1 and 𝑒2(𝑠) according to

𝑒1(𝑠̂;𝑤1, 𝑤2) =
1
2

[
1 − 𝐹1(𝑠̂)

]
𝑤1 +

1
4

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]
𝑤2, (A.13)

and

𝑒2(𝑠;𝑤1) =
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
𝜆𝑤1. (A.14)

If 𝑠̂ ∈ (0, 1), the board's equilibrium replacement policy 𝑠̂(𝑒1, 𝑒2(𝑠);𝑤1, 𝑤2, 𝑘) solves

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠̂)

]
(1 −𝑤1) = 𝜋(𝑤2, 𝑒1) − 𝑘. (A.15)

Denote the board's optimal contract by (𝑤∗
1, 𝑤

∗
2, 𝑘

∗) and the corresponding equilibrium cutoff by 𝑠̂∗. It is useful to first prove the

following lemma. □

Lemma A4. Suppose that 𝜆 ∈ [0, 1), then 𝑠̂∗ ≠ 0.

Proof. Suppose to the contrary that 𝑠̂∗ = 0. Consider an alternative contract (𝑤′
1, 𝑤

′
2, 𝑘

′) that induces a positive cutoff 𝑠̂′ > 0,

where

𝑤′
1 = 𝑤

′
2 = 𝑤

∗
1, (A.16)

𝑘′ = 𝜋(𝑤′
2, 𝑒1(𝑠̂

′;𝑤′
1, 𝑤

′
2)) −

𝑓1(𝑠̂′)
𝑓1(𝑠̂′) + 𝑓0(𝑠̂′)

[
(1 − 𝜆)𝑒1(𝑠̂′;𝑤′

1, 𝑤
′
2) + 𝜆𝑒2(𝑠̂

′;𝑤′
2)

]
(1 −𝑤′

1). (A.17)

Notice that 𝜋(𝑤′
2, 𝑒1(𝑠̂

′;𝑤′
1, 𝑤

′
2)) > 0 and

𝑓1(𝑠̂′)
𝑓1(𝑠̂′)+𝑓0(𝑠̂′)

can be arbitrarily small as 𝑠̂′ → 0. Therefore, there exists 𝑠̂′ ∈ (0, 1) such

that 𝑘′ ≥ 0, and hence the constructed contract (𝑤′
1, 𝑤

′
2, 𝑘

′) is well-defined. Next, notice that

𝑒1(𝑠̂∗;𝑤∗
1, 𝑤

∗
2) =

1
2
𝑤∗

1 <
1
2
[1 − 𝐹1(𝑠̂′)]𝑤∗

1 +
1
4

[
𝐹1(𝑠̂′) + 𝐹0(𝑠̂′)

]
𝑤∗

1 = 𝑒1(𝑠̂′;𝑤′
1, 𝑤

′
2),

where the first equality follows from the postulated 𝑠̂∗ = 0 and the strict inequality follows from the fact that 𝐹0(𝑠̂′) > 𝐹1(𝑠̂′) for

𝑠̂′ ∈ (0, 1). Therefore, we must have that

∫
1

0

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1(𝑠̂∗;𝑤∗

1, 𝑤
∗
2) + 𝜆𝑒2(𝑠;𝑤

∗
1)

]
(1 −𝑤∗

1)
}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

=∫
𝑠̂′

0

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1(𝑠̂∗;𝑤∗

1, 𝑤
∗
2) + 𝜆𝑒2(𝑠;𝑤

∗
1)

]
(1 −𝑤∗

1)
}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+ ∫
1

𝑠̂′

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1(𝑠̂∗;𝑤∗

1, 𝑤
∗
2) + 𝜆𝑒2(𝑠;𝑤

∗
1)

]
(1 −𝑤∗

1)
}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

<∫
𝑠̂′

0

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1(𝑠̂′;𝑤′

1, 𝑤
′
2) + 𝜆𝑒2(𝑠;𝑤

′
1)

]
(1 −𝑤′

1)
}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+ ∫
1

𝑠̂′

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1(𝑠̂′;𝑤′

1, 𝑤
′
2) + 𝜆𝑒2(𝑠;𝑤

′
1)

]
(1 −𝑤′

1)
}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
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<∫
1

𝑠̂′

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1(𝑠̂′;𝑤′

1, 𝑤
′
2) + 𝜆𝑒2(𝑠;𝑤

′
1)

]
(1 −𝑤′

1)
}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+ 1
2

[
𝐹1(𝑠̂′) + 𝐹0(𝑠̂′)

] [
𝜋(𝑤′

2, 𝑒1(𝑠̂
′;𝑤′

1, 𝑤
′
2)) − 𝑘

′] .
The first inequality follows from (A.16) and 𝑒1(𝑠̂∗;𝑤∗

1, 𝑤
∗
2) < 𝑒1(𝑠̂

′;𝑤′
1, 𝑤

′
2), and the second inequality follows from (A.17)

and Assumption 1. The above inequality implies that the constructed contract (𝑤′
1, 𝑤

′
2, 𝑘

′) generates strictly higher profit than

(𝑤∗
1, 𝑤

∗
2, 𝑘

∗) to the board, a contradiction. This completes the proof. □

Now we can prove Proposition 3. First, we show that 𝑘∗ = 0. Suppose to the contrary that 𝑘∗ > 0. From Lemma A4, it suffices

to consider the following two cases depending on the value of the equilibrium cutoff 𝑠̂∗.

Case I: 𝒔̂∗ ∈ (𝟎, 𝟏) Define

Ξ(𝑤2) ∶= 𝜋(𝑤2, 𝑒1(𝑠̂∗;𝑤∗
1, 𝑤2)) −

𝑓1(𝑠̂∗)
𝑓1(𝑠̂∗) + 𝑓0(𝑠̂∗)

[
(1 − 𝜆)𝑒1(𝑠̂∗;𝑤∗

1, 𝑤2) + 𝜆𝑒2(𝑠̂∗;𝑤∗
1)

]
(1 −𝑤∗

1).

It follows immediately that 𝑘∗ = Ξ(𝑤∗
2) and Ξ(1) < 0. Therefore, there exists 𝑤′

2 > 𝑤
∗
2 such that Ξ(𝑤′

2) = 𝑘
∗∕2. Consider an

alternative contract (𝑤∗
1, 𝑤

′
2, 𝑘

∗∕2). It is clear that replacement policy 𝑠̂∗ can be induced under the alternative contract from

equation (A.15). Moreover, 𝑒1(𝑠̂∗;𝑤∗
1, 𝑤

∗
2) > 𝑒1(𝑠̂

∗;𝑤∗
1, 𝑤

′
2) from equation (A.13), that is, period-1 effort under the alternative

contract is higher than that under contract (𝑤∗
1, 𝑤

∗
2, 𝑘

∗). Therefore, we have that

𝑓1(𝑠̂∗)
𝑓1(𝑠̂∗) + 𝑓0(𝑠̂∗)

[
(1 − 𝜆)𝑒1(𝑠̂∗;𝑤∗

1, 𝑤
′
2) + 𝜆𝑒2(𝑠̂

∗;𝑤∗
1)

]
(1 −𝑤∗

1)

>
𝑓1(𝑠̂∗)

𝑓1(𝑠̂∗) + 𝑓0(𝑠̂∗)
[
(1 − 𝜆)𝑒1(𝑠̂∗;𝑤∗

1, 𝑤
∗
2) + 𝜆𝑒2(𝑠̂

∗;𝑤∗
1)

]
(1 −𝑤∗

1),

which implies that the board's expected profit after replacement under the alternative contract is again higher than that under

contract (𝑤∗
1, 𝑤

∗
2, 𝑘

∗). Therefore, the alternative contract (𝑤∗
1, 𝑤

′
2, 𝑘

∗∕2) generates a higher profit to the board than contract

(𝑤∗
1, 𝑤

∗
2, 𝑘

∗), a contradiction.

Case II: 𝒔̂∗ = 𝟏 It follows that the left-hand side of (A.15) is less than the right-hand side at 𝑠̂ = 1. In this case, the board can

simply decrease the severance pay to 0 without violating any constraints and strictly increase the expected profit.

Next, we show that 𝑤∗
1 = 𝑤∗

2 and 𝑠̂∗ = 1
2 if 𝜆 = 0. The board's profit maximization problem can be written as

max
{𝑤1,𝑤2,𝑒1,𝑠̂}

𝜋(𝑤1, 𝑤2, 𝑒1, 𝑠̂) ∶=
1
2

[
1 − 𝐹1(𝑠̂)

]
𝑒1(1 −𝑤1) +

1
4

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]
𝑒1(1 −𝑤2)

s.t.

𝑒1 −
{1
2

[
1 − 𝐹1(𝑠̂)

]
𝑤1 +

1
4

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]
𝑤2

}
= 0, (A.18)

and

1
2
(1 −𝑤2) −

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

(1 −𝑤1) = 0. (A.19)

Let  be the Lagrangian and denote 𝜆1 and 𝜆2 as Lagrangian multipliers on constraints (A.18) and (A.19), respectively. The

first-order conditions for 𝑤1 and 𝑤2 yield the following:

𝜕(𝑤1, 𝑤2, 𝑒1, 𝑠̂, 𝜆1, 𝜆2)
𝜕𝑤1

= 0 ⇒ −1
2

(
𝑒1 + 𝜆1

) [
1 − 𝐹1(𝑠̂)

]
+

𝑓1(𝑠̂)
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

𝜆2 = 0.

𝜕(𝑤1, 𝑤2, 𝑒1, 𝑠̂, 𝜆1, 𝜆2)
𝜕𝑤2

= 0 ⇒ −1
2
(𝑒1 + 𝜆1)

[
𝐹1(𝑠̂) + 𝐹0(𝑠̂)

]
− 𝜆2 = 0.

Lemma A4 states that inducing 𝑠̂ = 0 is never optimal to the board. Moreover, 𝑠̂ = 1 is not optimal because this cutoff induces

zero period-1 effort. Thus, we have that
𝑓1(𝑠̂)

𝑓1(𝑠̂)+𝑓0(𝑠̂)
> 0, 𝐹1(𝑠̂) + 𝐹0(𝑠̂) > 0 and 1 − 𝐹1(𝑠̂) > 0. This indicates that 𝜆2 = 0 and
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𝜆1 = −𝑒1. The first-order condition of the Lagrangian with respect to 𝑠̂ yields

𝜕(𝑤1, 𝑤2, 𝑒1, 𝑠̂, 𝜆1, 𝜆2)
𝜕𝑠̂

= 0

⇒ − 𝑒1(1 −𝑤1)𝑓1(𝑠̂) +
1
2

[
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

]
𝑒1(1 −𝑤2) + 𝜆1

(
𝑓1(𝑠̂)𝑤1 −

1
2

[
𝑓1(𝑠̂) + 𝑓0(𝑠̂)

]
𝑤2

)
= 0

⇒
𝑓1(𝑠̂)

𝑓1(𝑠̂) + 𝑓0(𝑠̂)
= 1

2
⇒ 𝑠̂∗ = 1

2
.

Last, it follows from the board's indifference condition (A.19) and 𝑠̂∗ = 1
2 that 𝑤∗

1 = 𝑤∗
2. This completes the proof.

Proof of Proposition 4. First, fixing {𝑤(𝑠), 𝑟(𝑠), 𝑘(𝑠)} and 𝑤𝑟, the replacement manager chooses 𝑒2𝑟 to maximize

1
2

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2𝑟

]
𝑤𝑟 −

1
2
𝑒22𝑟 ⇒ 𝑒2𝑟(𝑤𝑟) =

1
2
𝜆𝑤𝑟.

Second, given contract {𝑤(𝑠), 𝑟(𝑠), 𝑘(𝑠)}, the incumbent manager chooses 𝑒1 and 𝑒2(𝑠) to maximize

∫
1

0
𝑟(𝑠)

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠)

]
𝑤(𝑠) − 1

2
[𝑒2(𝑠)]2

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+ ∫
1

0
[1 − 𝑟(𝑠)] 𝑘(𝑠)𝑑

𝐹1(𝑠) + 𝐹0(𝑠)
2

− 1
2
𝑒21.

The first-order conditions with respect to 𝑒1 and 𝑒2(𝑠) yield

𝑒1 = (1 − 𝜆)∫
1

0
𝑟(𝑠)

𝑓1(𝑠)
𝑓1(𝑠) + 𝑓0(𝑠)

𝑤(𝑠)𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
,

and

𝑒2(𝑠) = 𝜆
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
𝑤(𝑠).

It is clear from the above two equations that 𝑘(𝑠) cannot provide incentive on either 𝑒1 or 𝑒2(𝑠). Moreover, because the signal

is contractible, the board can directly condition replacement on it. Therefore, we must have 𝑘∗(𝑠) = 0 for all 𝑠 ∈ [0, 1] in the

optimal contract.

Finally, the board chooses {𝑤(𝑠), 𝑟(𝑠)} and 𝑤𝑟 to maximize

∫
1

0
𝑟(𝑠)

{
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)
[
(1 − 𝜆)𝑒1 + 𝜆𝑒2(𝑠)

]
[1 −𝑤(𝑠)]

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2

+ ∫
1

0
[1 − 𝑟(𝑠)]

{1
2

[
(1 − 𝜆)𝑒1 + 𝜆𝑒2𝑟

] [
1 −𝑤𝑟

]}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
.

Fixing 𝑒1, pointwise maximization on 𝑤𝑟 and 𝑤(𝑠) yield

𝑤𝑟(𝑒1) = max
{

1
2
− 1 − 𝜆
𝜆2
𝑒1, 0

}
,

and

𝑤(𝑠, 𝑒1) = max
{

1
2
− 1

2
𝑓1(𝑠) + 𝑓0(𝑠)
𝑓1(𝑠)

1 − 𝜆
𝜆2
𝑒1, 0

}
.

Therefore, the board's expected profit can be rewritten as

∫
1

0
𝑟(𝑠)𝜋1(𝑠, 𝑒1)𝑑

𝐹1(𝑠) + 𝐹0(𝑠)
2

+ ∫
1

0
[1 − 𝑟(𝑠)]𝜋(𝑒1)𝑑

𝐹1(𝑠) + 𝐹0(𝑠)
2
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= ∫
1

0

{
𝑟(𝑠)𝜋1(𝑠, 𝑒1) + [1 − 𝑟(𝑠)]𝜋(𝑒1)

}
𝑑
𝐹1(𝑠) + 𝐹0(𝑠)

2
,

where

𝜋1(𝑠, 𝑒1) ∶=
𝑓1(𝑠)

𝑓1(𝑠) + 𝑓0(𝑠)

[
(1 − 𝜆)𝑒1 + 𝜆2

𝑓1(𝑠)
𝑓1(𝑠) + 𝑓0(𝑠)

𝑤(𝑠, 𝑒1)
] [

1 −𝑤(𝑠, 𝑒1)
]
,

and 𝜋(𝑒1) is defined in equation (7). It is straightforward to verify that 𝜋1(𝑠, 𝑒1) is strictly increasing in 𝑠 and 𝜋1(
1
2 , 𝑒1) = 𝜋(𝑒1).

Thus, the integral is maximized by setting 𝑟(𝑠) = 1 for 𝑠 ∈ [12 , 1] and 𝑟(𝑠) = 0 for 𝑠 ∈ [0, 12 ). This completes the proof. □




